寻找两条3D线段交点的算法
找到两条二维线段的交点很容易; 公式很简单。但恐怕找不到两条 3D 线段的交点。
最好在 C# 中找到两条 3D 线段的交点的算法是什么?
我在这里找到了C++ 实现。但我不信任该解决方案,因为它优先考虑某个平面(看看实现部分下实现 perp 的方式,它假设优先考虑 z 平面)任何通用算法不得假设任何平面方向或偏好)。
有更好的解决方案吗?
Finding the point of intersection for two 2D line segments is easy; the formula is straight forward. But finding the point of intersection for two 3D line segments is not, I afraid.
What is the algorithm, in C# preferably that finds the point of intersection of two 3D line segments?
I found a C++ implementation here. But I don't trust the solution because it makes preference of a certain plane (look at the way perp
is implemented under the implementation section, it assumes a preference for z plane
. Any generic algorithm must not assume any plane orientation or preference).
Is there a better solution?
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(10)
大多数 3D 线不相交。一种可靠的方法是找到两条 3D 线之间的最短线。如果最短线的长度为零(或距离小于您指定的任何容差),那么您就知道两条原始线相交。
一种查找两条 3D 线之间最短线的方法,由 Paul Bourke 编写< /a> 总结/解释如下:
方法一:
方法二:
找到了这个方法 Paul Bourke 的网站 这是一个优秀的几何资源。该网站已重新组织,因此请向下滚动以查找主题。
Most 3D lines do not intersect. A reliable method is to find the shortest line between two 3D lines. If the shortest line has a length of zero (or distance less than whatever tolerance you specify) then you know that the two original lines intersect.
A method for finding the shortest line between two 3D lines, written by Paul Bourke is summarized / paraphrased as follows:
Approach one:
Approach two:
This method was found on Paul Bourke's website which is an excellent geometry resource. The site has been reorganized, so scroll down to find the topic.
我尝试了@Bill回答,但实际上并不是每次都有效,我可以解释一下。基于他的代码中的链接。让我们以这两条线段为例 AB和CD。
当您尝试获得交集时,它可能会告诉您是 A 点(错误)或者没有交点(正确)。取决于您放置这些段的顺序。
x = A+(BA)s
x = C+(DC)t
比尔解出了s,但从未解出t。由于您希望交点位于两条线段上,因此 s 和 t 都必须来自区间 <0,1>。在我的示例中实际发生的情况是,只有 s 如果来自该间隔且 t 为 -2。 A 位于由 C 和 D 定义的直线上,但不在线段 CD 上。
其中da是BA,db是DC,dc是CA,我只是保留了Bill提供的名称。
然后正如我所说,你必须检查 s 和 t 是否都来自 <0,1> 并且你可以计算结果。根据上面的公式。
比尔答案的另一个问题是当两条线共线并且有多个交点时。将会被零除。你想避免这种情况。
I tried @Bill answer and it actually does not work every time, which I can explain. Based on the link in his code.Let's have for example these two line segments AB and CD.
when you try to get the intersection it might tell you It's the point A (incorrect) or there is no intersection (correct). Depending on the order you put those segments in.
x = A+(B-A)s
x = C+(D-C)t
Bill solved for s but never solved t. And since you want that intersection point to be on both line segments both s and t have to be from interval <0,1>. What actually happens in my example is that only s if from that interval and t is -2. A lies on line defined by C and D, but not on line segment CD.
where da is B-A, db is D-C and dc is C-A, I just preserved names provided by Bill.
Then as I said you have to check if both s and t are from <0,1> and you can calculate the result. Based on formula above.
Also another problem with Bills answer is when two lines are collinear and there is more than one intersection point. There would be division by zero. You want to avoid that.
我找到了一个解决方案:它是在这里。
这个想法是利用向量代数,使用
dot
和cross
来简化这个阶段的问题:并计算
a
。请注意,此实现不需要任何平面或轴作为参考。
I found a solution: it's here.
The idea is to make use of vector algebra, to use the
dot
andcross
to simply the question until this stage:and calculate the
a
.Note that this implementation doesn't need to have any planes or axis as reference.
您提到的原始来源仅适用于二维案例。 perp 的实现很好。 x 和 y 的使用只是变量,并不表示对特定平面的偏好。
同一个网站有 3d 案例:
“http://geomalgorithms.com/a07-_distance.html”
看起来 Eberly 创作了回复:
“https://www.geometrictools.com/Documentation/DistanceLine3Line3.pdf”
放置这些东西放在这里是因为谷歌指向了地理算法和这篇文章。
The original source you mention is only for the 2d case. The implementation for perp is fine. The use of x and y are just variables not an indication of preference for a specific plane.
The same site has this for the 3d case:
"http://geomalgorithms.com/a07-_distance.html"
Looks like Eberly authored a response:
"https://www.geometrictools.com/Documentation/DistanceLine3Line3.pdf"
Putting this stuff here because google points to geomalgorithms and to this post.
我认为是的。您可以按照与二维(或任何其他维度)完全相同的方式找到交点。唯一的区别是,所得的线性方程组更有可能无解(意味着直线不相交)。
您可以手动求解一般方程,然后使用您的解决方案,或者以编程方式求解,例如使用
I think it is. You can find the point of intersection in exactly the same way as in 2d (or any other dimension). The only difference is, that the resulting system of linear equations is more likely to have no solution (meaning the lines do not intersect).
You can solve the general equations by hand and just use your solution, or solve it programmatically, using e.g. Gaussian elemination.
我找到了答案!
在上面的答案中,我找到了这些方程:
Eq#1:
var s = Vector3.Dot(Vector3.Cross(dc, db), Vector3.Cross(da, db)) / Norm2(Vector3.Cross( da, db));
Eq#2:
var t = Vector3.Dot(Vector3.Cross(dc, da), Vector3.Cross(da, db)) / Norm2(Vector3.Cross(da) , db));
然后我修改了 #3rd 方程:
Eq#3:
在保持 Eq#1 和 Eq#2 相同的同时,我创建了这个方程:
MyEq#1: Vector3f p0 = da .mul(s).add(A<向量>);
MyEq#2:
Vector3f p1 = db.mul(t).add(C);
然后我疯狂猜测创建这三个方程:
MyEq#3:
Vector3f p0z = projUV(da, p0).add(A<向量>);
MyEq#4:
Vector3f p1z = projUV(db, p1).add(C);
最后将 projUV(1, 2) 的两个幅度相减,得到: 0 到 0.001f 之间的误差幅度来查找两条线是否相交。
MyEq#5:
var m = p0z.magnitude() - p1z.magnitude();
现在我要提醒你,这是用 Java 完成的。这个解释还没有准备好java约定。只需根据上面的方程式将其发挥作用即可。 (提示:暂时不要变换到世界空间,以便 UV 方程的两个投影完全落在您想要的位置)。
这些方程在我的程序中在视觉上是正确的。
I found an answer!
in an answer from above, I found these equations:
Eq#1:
var s = Vector3.Dot(Vector3.Cross(dc, db), Vector3.Cross(da, db)) / Norm2(Vector3.Cross(da, db));
Eq#2:
var t = Vector3.Dot(Vector3.Cross(dc, da), Vector3.Cross(da, db)) / Norm2(Vector3.Cross(da, db));
Then I modified #3rd Equation:
Eq#3:
And while keeping Eq#1 and Eq#2 just the same, I created this equations:
MyEq#1:
Vector3f p0 = da.mul(s).add(A<vector>);
MyEq#2:
Vector3f p1 = db.mul(t).add(C<vector>);
then I took a wild guess at creating these three more equations:
MyEq#3:
Vector3f p0z = projUV(da, p0).add(A<vector>);
MyEq#4:
Vector3f p1z = projUV(db, p1).add(C<vector>);
and finally to get the subtraction of the two magnitudes of the projUV(1, 2) gives you the margin of the error between 0 and 0.001f to find whether the two lines intersect.
MyEq#5:
var m = p0z.magnitude() - p1z.magnitude();
Now I mind you, this was done in Java. This explanation is not java convention ready. Just put it to work from the above equations. (Tip: Don't transform to World Space yet so that both projection of UV equations fall exactly where you want them).
And these equations are visually correct in my program.
除了鲍勃的回答之外:
我在测试中发现所编写的 junction() 函数解决了原始问题的一半,这是一种查找两个 3D 线段交点的算法。
假设这些线是共面的,这个问题有 5 种可能的结果:
线段是平行的,所以它们不相交,或者,
线段不平行,并且它们所在的无限长线确实相交,但交点不在任一线段的边界内,或者,
线相交且交点在a 行但不是 b 行,或者,
线相交,并且交点位于线 b 的边界内,但不在线 a 的范围内,或者,
线相交,且交点位于两条线段的边界内。
当直线相交且交点位于直线 a 的边界内时,Bob 的 junction() 函数返回 true,但如果直线相交且交点仅位于直线 b 的边界内,则返回 false。
但是,如果您调用 intersect() 两次,首先使用线 a,然后使用线 b,然后第二次使用线 b 和 a(交换第一个和第二个参数),那么如果两次调用都返回 true,则交集包含在两个线段内(情况5)。如果两个调用都返回 false,则两个线段都不包含相交(情况 2)。如果只有一个调用返回 true,则作为该调用的第一个参数传递的段包含交点(情况 3 或 4)。
另外,如果调用norm2(cross(da,db)) 的返回值等于0.0,则线段是平行的(情况1)。
我在测试中注意到的另一件事是,对于经常实现的那种代码的固定精度浮点数, dot(dc, cross(da,db)) 返回 0.0 可能很不寻常,因此当其返回 false 时不是这样的可能不是你想要的。您可能想要引入一个阈值,低于该阈值代码将继续执行而不是返回 false。这表明线段在 3D 中倾斜,但根据您的应用程序,您可能希望容忍少量倾斜。
我注意到的最后一件事是 Bill 代码中的这条语句:
ip = a.first + da * Coord(s,s,s);
da * Coord(s,s,s) 看起来是向量乘以向量乘法。当我用 da * 的标量倍数替换它时,我发现它工作得很好。
但无论如何,非常感谢鲍勃。他明白了最困难的部分。
In addition to Bobs answer:
I find on testing that the intersection() function as written solves half the original problem, which was an algorithm to find the point of intersection of two 3D line segments.
Assuming the lines are coplanar, there are 5 possible outcomes to this question:
The line segments are parallel, so they don't intersect, or,
The line segments aren't parallel, and the infinite length lines they lie upon do intersect, but the intersection point is not within the bounds of either line segment, or,
The lines intersect and the intersection point is within the bounds of line a but not line b, or,
The lines intersect and the intersection point is within the bounds of line b but not line a, or,
The lines intersect and the intersection point is within the bounds of both line segments.
Bob's intersection() function returns true when the lines intersect and the point of intersection is within the bounds of line a, but returns false if the lines intersect and the point of intersection is within the bounds of only line b.
But if you call intersect() twice, first with lines a then b and then a second time with lines b and a (first and second params swapped), then if both calls return true, then the intersect is contained within both line segments (case 5). If both calls return false, then neither line segment contains the intersect (case 2). If only one of the calls returns true, then the segment passed as the first parameter on that call contains the point of intersection (cases 3 or 4).
Also, if the return from the call to norm2(cross(da,db)) equals 0.0, then the line segments are parallel (case 1).
The other thing I noted in testing is that with fixed precision floating point numbers of the kind code is often implemented with, it can be quite unusual for dot(dc, cross(da,db)) to return 0.0, so returning false when its not the case might not be what you want. You might want to introduce a threshold below which the code continues to execute rather than return false. This indicates the line segments are skew in 3D, but depending on your application you might want to tolerate a small amount of skew.
The final thing I noticed was this statement in Bill's code:
ip = a.first + da * Coord(s,s,s);
That da * Coord(s,s,s) looks to be a vector times vector multiply. When I replaced it with a scalar multiple of da * s, I found it worked fine.
But in any case, many thanks to Bob. He figured out the hard part.
https://bloodstrawberry.tistory.com/1037
本博客是用Unity c#实现的。
https://bloodstrawberry.tistory.com/1037
This blog was implemented by Unity c#.
我将从处理相应的线-线相交问题开始。假设第一条线经过点 p1 并平行于向量 v1,而第二条线经过点 p2 并平行于向量 v2。正如一些人已经指出的,在 3D 中两条线很少相交。但如果我们假设它们是这样,那么交点 q 可以写为
q = p2 + t * v2
其中
t = dot(p1 - p2, v3) / dot(v2, v3)
且其中
v3 = cross(cross( v1、v2)、v1)。
由于我们假设两条线相交,因此它们位于同一平面内。通过 v1 和 v2 的叉积找到的向量与该平面正交。与 v1 进行下一个叉积将 v3 放回到平面中,但也与 v1 正交。然后可以将 3D 问题视为 2D 问题,从而得到 t 的表达式。
有了直线-直线相交问题的解决方案,线段-线段相交问题现在只需检查 q 是否位于两条线段上即可。这应该只是比较点积来判断 q 是否位于第一段的问题。第二段更容易检查,因为上面的 q 表达式总是将 q 放在第二行,即我们只需要检查 t 的值。
I would start by treating the corresponding line-line intersect problem. Say the first line goes through point p1 and is parallel to vector v1, while the second line goes through point p2 and is parallel to vector v2. As some have already noted, in 3D rarely do two lines intersect. But if we assume that they do, then the intersection point q can be written as
q = p2 + t * v2
where
t = dot(p1 - p2, v3) / dot(v2, v3)
and where
v3 = cross(cross(v1, v2), v1).
Since we are assuming the two lines intersect, they lie in the same plane. The vector found by taking the cross product of v1 and v2 is orthogonal to this plane. Taking the next cross product with v1 places v3 back in the plane but also orthogonally to v1. The 3D problem can then be treated as a 2D problem, leading to the expression for t.
Having a solution to the line-line intersect problem, the segment-segment intersection problem is now simply a matter of checking if q lies on both segments. It should just be a matter of comparing dot products to tell if q lies on the first segment. The second segment is even easier to check since the expression above for q always places q on the second line, i.e., we just need to examine the value of t.