在 Windows 上使用一组 2D 图像创建 3D 模型
我想在 Windows 上使用一组 2D 图像创建 3D 模型,可以通过 Web 服务发送到 iphone 以在其上显示。 我知道它可以通过 Opengl 完成,但不知道如何开始,而且如果我成功创建它,它是否与 iphone 兼容,因为 iphone 使用 opengl es。 提前致谢。
I want to create a 3D model using set of 2D images on windows which can be send through webservice to iphone to display on it.
I know it can be done through Opengl but don't know how to start and also if I succeeded in creating it,is it compatible with iphone as iphone uses opengl es.
Thanks in advance.
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(2)
您打算进行什么样的改造来创建 3D 模型?我曾经开发过一个应用程序,使用这样的概念从一个对象的三个图像创建一个模型。效果并不好。可以创建的模型非常有限。
OpenGL 没有内置功能来执行此类操作。您有什么理由不想使用真实的 3D 模型吗?听起来好像您正在为您的问题寻找快速解决方案。但恐怕如果你没有任何OpenGL经验,你应该准备好学习很多东西。
What kind of transformation do you have in mind to create the 3D models? I once worked on an application using such a concept to create a model from three images of an object. It didn't really work well. The models that could be created were very limited.
OpenGL does not have a built in functionality to do such stuff. Are there any reasosns why you do not want to use a real 3D-model? It sounds as if you are looking for a fast solution for your problem. But I'm afraid if you do not have any OpenGL experience, you should prepare prepare for lots of stuff to learn.
如果您想从 2D 照片自动创建 3D 模型,您将需要做大量的工作。 AFAIK,这不是您可以获得廉价预打包解决方案的地方。 Autodesk 对 ImageModeler 收取了一大笔费用。
MeshLab 可能是一个很好的起点,但即使这样也不能自动将照片转换为 3D 模型 AFAIK。
请访问 David Lowe 的网站。我发现“来自尺度不变关键点的独特图像特征”论文非常有趣,尽管我已经有一段时间没有重新阅读它了。如果不出意外,这应该会让您了解为什么这远非一个微不足道的问题。
If you want to create 3D models automatically from 2D photos, you're going to have a fair bit of work to do. AFAIK, this is not something where you can get a cheap pre-packaged solution. Autodesk charge a small fortune for ImageModeler.
MeshLab may be a good starting point, but even that can't automatically convert photos to a 3D model AFAIK.
Take a look at David Lowes site. I found the "Distinctive image features from scale-invariant keypoints" paper quite interesting, though I haven't re-read it in a while. If nothing else, this should give you some idea why this is far from a trivial problem.