为淘汰赛创建二叉树
我正在尝试创建一个用于淘汰赛的二叉树。该树由带有左指针和右指针的 TNode 组成。
这是我想出的代码(如下);但是,它在使用 CreateTree
部分中的指针时遇到了困难。
一旦创建了一个足够大的空树,我需要将 Memo1.List 上的名称添加到树的底部,以便我可以将它们配对以进行匹配。
我该怎么做?
Type
TNodePtr = ^TNode;
TNode = Record
Data:String;
Left:TNodePtr;
Right:TNodePtr;
end;
Type
TTree = Class
Private
Root:TNodePtr;
Public
Function GetRoot:TNodePtr;
Constructor Create;
end;
var
MyTree:TTree;
function TTree.GetRoot: TNodePtr;
begin
Result:=Root;
end;
Constructor TTree.Create;
Var NewNode:TNodePtr;
Begin
New(NewNode);
NewNode^.Data:='Spam';
NewNode^.Left:=Nil;
NewNode^.Right:=Nil;
End;
Function Power(Base:integer;Exponent:integer):Integer; //Used for only positive powers in this program so does not need to handle negatives.
begin
If Base = 0 then
Power := 0
else If Exponent = 0 then
Power := 1
else //If Exponent > 0 then
Power:=Base*Power(Base, Exponent-1);
end;
Function DenToBinStr(Value:Integer):String;
Var iBinaryBit:integer;
sBinaryString:String;
Begin
While Value <> 0 do
begin
iBinaryBit:=Value mod 2;
sBinaryString:=sBinaryString+IntToStr(iBinaryBit);
Value:=Value div 2;
end;
Result:=sBinaryString;
end;
Procedure TForm1.CreateTree;
Var iRounds, iCurrentRound, iTreeLocation, iNodeCount, iMoreString, iAddedStringLength, iStringTree:Integer;
sBinary:String;
NewNode, ThisNode:TNodePtr;
begin
iRounds:=0;
While Power(2,iRounds) < Memo1.Lines.Count do {Calculates numbers of rounds by using whole powers of 2}
iRounds:=iRounds+1;
If iRounds > 0 then {Make sure there IS a round}
begin
For iCurrentRound:=1 to iRounds do {Select the round we are currently adding nodes to}
begin
iTreeLocation:=Power(2,iCurrentRound); {Works out the number of nodes on a line}
For iNodeCount:= 0 to iTreeLocation do {Selects the node we are currently working on}
begin
ThisNode:=MyTree.GetRoot;
sBinary:=DenToBinStr(iNodeCount); {Gets the tree traversal to that node from the root}
If Length(sBinary) < iCurrentRound then {Makes sure that the tree traversal is long enough, Fills spare spaces with Left because 0 decimal = 0 binary (we need 00 for 2nd round)}
begin
iMoreString:= iCurrentRound-Length(sBinary);
for iAddedStringLength := 0 to iMoreString do
sBinary:='0'+sBinary;
end;
iStringTree:=0; {Init iStringTree, iStringTree is the position along the binary string (alt the position down the tree)}
While iStringTree <= iCurrentRound-1 do {While we are not at the location to add nodes to, move our variable node down the tree}
begin
If sBinary[iStringTree]='0' then
ThisNode:=ThisNode^.Left
else If sBinary[iStringTree]='1' then
ThisNode:=ThisNode^.Right;
iStringTree:=iStringTree+1;
end;
New(NewNode); {Create a new node once we are in position}
NewNode^.Data:='Spam';
NewNode^.Left:=Nil;
NewNode^.Right:=Nil;
If sBinary[iCurrentRound]='0' then
ThisNode^.Left:=NewNode
else If sBinary[iCurrentRound]='1' then
ThisNode^.Right:=NewNode;
ThisNode.Data:='Spam';
Showmessage(ThisNode.Data);
end;
end;
end;
{1.2Add on byes}
{1.2.1Calculate No Of Byes and turn into count. Change each count into binary
equivalent then flip the bits}
//iByes:= Memo1.Lines.Count - Power(2,iRounds);
{1.2.2Add node where 0 is left and 1 is right}
{2THEN FILL TREE using If node.left and node.right does not exist then write
next name from list[q] q++}
{3THEN DISPLAY TREE}
end;
I am trying to create a binary tree for use in a knockout tournament. The tree consists of TNodes with Left and Right pointers.
This is the code that I have come up with (below); however, it runs into difficulties with the pointers in the CreateTree
section.
Once this creates an empty tree of large enough size, I need to add the names on the Memo1.List to the bottoms of the tree so I can pair them up for matches.
How would I do this?
Type
TNodePtr = ^TNode;
TNode = Record
Data:String;
Left:TNodePtr;
Right:TNodePtr;
end;
Type
TTree = Class
Private
Root:TNodePtr;
Public
Function GetRoot:TNodePtr;
Constructor Create;
end;
var
MyTree:TTree;
function TTree.GetRoot: TNodePtr;
begin
Result:=Root;
end;
Constructor TTree.Create;
Var NewNode:TNodePtr;
Begin
New(NewNode);
NewNode^.Data:='Spam';
NewNode^.Left:=Nil;
NewNode^.Right:=Nil;
End;
Function Power(Base:integer;Exponent:integer):Integer; //Used for only positive powers in this program so does not need to handle negatives.
begin
If Base = 0 then
Power := 0
else If Exponent = 0 then
Power := 1
else //If Exponent > 0 then
Power:=Base*Power(Base, Exponent-1);
end;
Function DenToBinStr(Value:Integer):String;
Var iBinaryBit:integer;
sBinaryString:String;
Begin
While Value <> 0 do
begin
iBinaryBit:=Value mod 2;
sBinaryString:=sBinaryString+IntToStr(iBinaryBit);
Value:=Value div 2;
end;
Result:=sBinaryString;
end;
Procedure TForm1.CreateTree;
Var iRounds, iCurrentRound, iTreeLocation, iNodeCount, iMoreString, iAddedStringLength, iStringTree:Integer;
sBinary:String;
NewNode, ThisNode:TNodePtr;
begin
iRounds:=0;
While Power(2,iRounds) < Memo1.Lines.Count do {Calculates numbers of rounds by using whole powers of 2}
iRounds:=iRounds+1;
If iRounds > 0 then {Make sure there IS a round}
begin
For iCurrentRound:=1 to iRounds do {Select the round we are currently adding nodes to}
begin
iTreeLocation:=Power(2,iCurrentRound); {Works out the number of nodes on a line}
For iNodeCount:= 0 to iTreeLocation do {Selects the node we are currently working on}
begin
ThisNode:=MyTree.GetRoot;
sBinary:=DenToBinStr(iNodeCount); {Gets the tree traversal to that node from the root}
If Length(sBinary) < iCurrentRound then {Makes sure that the tree traversal is long enough, Fills spare spaces with Left because 0 decimal = 0 binary (we need 00 for 2nd round)}
begin
iMoreString:= iCurrentRound-Length(sBinary);
for iAddedStringLength := 0 to iMoreString do
sBinary:='0'+sBinary;
end;
iStringTree:=0; {Init iStringTree, iStringTree is the position along the binary string (alt the position down the tree)}
While iStringTree <= iCurrentRound-1 do {While we are not at the location to add nodes to, move our variable node down the tree}
begin
If sBinary[iStringTree]='0' then
ThisNode:=ThisNode^.Left
else If sBinary[iStringTree]='1' then
ThisNode:=ThisNode^.Right;
iStringTree:=iStringTree+1;
end;
New(NewNode); {Create a new node once we are in position}
NewNode^.Data:='Spam';
NewNode^.Left:=Nil;
NewNode^.Right:=Nil;
If sBinary[iCurrentRound]='0' then
ThisNode^.Left:=NewNode
else If sBinary[iCurrentRound]='1' then
ThisNode^.Right:=NewNode;
ThisNode.Data:='Spam';
Showmessage(ThisNode.Data);
end;
end;
end;
{1.2Add on byes}
{1.2.1Calculate No Of Byes and turn into count. Change each count into binary
equivalent then flip the bits}
//iByes:= Memo1.Lines.Count - Power(2,iRounds);
{1.2.2Add node where 0 is left and 1 is right}
{2THEN FILL TREE using If node.left and node.right does not exist then write
next name from list[q] q++}
{3THEN DISPLAY TREE}
end;
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(2)
考虑通过从叶子构建树来完全不同地构建树。如果您有一个节点队列,则可以从前面取出两个节点,将它们与一个新节点连接在一起,然后将该新节点添加到队列的末尾。重复此操作,直到用完节点,您将获得一个锦标赛分组,其轮数与尝试从根部构建树所获得的轮数相同。
下面的代码构建了树并用备忘录中的名称填充叶子。
该代码的好处在于,我们在任何时候都不知道或关心任何特定节点需要处于什么级别。
如果参赛者的数量不是2的幂,那么名单末尾的一些参赛者可能会获得“轮空”回合,他们将被安排与名单顶部的获胜者进行比赛。上面的代码具有最少数量的节点。您的代码可能有许多“垃圾邮件”节点,这些节点并不代表锦标赛中的任何实际比赛。
树对象应该拥有它包含的节点,因此它应该有一个析构函数,如下所示:
您会注意到我也更改了树的构造函数的调用方式。如果树是空的,则不需要任何节点。如果树不为空,那么我们将在创建它时为其提供节点。
如果您有机会复制一棵树,那么您也需要复制它的所有节点。如果不这样做,那么当您释放一棵树时,副本的根节点指针将突然变得无效。
Think about building the tree differently altogether by building it from the leaves. If you have a queue of nodes, you can take two nodes off the front, join them together with a new node, and add that new node to the end of the queue. Repeat until you run out of nodes, and you'll have a tournament bracket with the same number of rounds you'd get from trying to build the tree from the root.
Here's code that builds the tree and fills the leaves with names from the memo.
What's nice about that code is that at no point do we know or care what level any particular node needs to be at.
If the number of competitors is not a power of two, then some of the competitors at the end of the list may get a "bye" round, and they'll be scheduled to play the winners at the top of the list. The code above has a minimal number of nodes. Your code may have a number of "spam" nodes that don't represent any actual match in the tournament.
The tree object should own the nodes it contains, so it should have a destructor, like this:
You'll notice I changed how the tree's constructor is called, too. If the tree is empty, it doesn't need to have any nodes. If the tree isn't empty, then we'll supply it with its nodes when we create it.
If you have occasion to copy a tree, then you'll need to copy all its nodes, too. If you don't, then when you free one tree, the copy's root-node pointer will suddenly become invalid.
我实际上已经成功地重写了我的原始代码以使其单独工作。它似乎在此时此刻发挥作用。
这是我现在正在使用的程序。谢谢罗布,我将把你的作为答案,因为它看起来对我来说会更好,我会仔细查看它以了解我能学到的东西,但为了避免不必要地使用其他代码,我现在将使用我自己的代码。
编辑:2010年3月3日
我找到了一种更好、更简单的递归方法。
I have actually managed to rewrite my original code to make it work individually. It appears to work at this moment in time.
This is the procedure I am now using. Thanks Rob, i'll set yours as the answer since it looks like it will work better for mine and i'll look over it to learn what I can but for the purposes of not unnecessarily using others code I will use my own for now.
EDIT: 03/03/2010
I found a much better and simpler way of doing this recursively.