布尔代数简化
需要帮助不知道进行这种简化的思维过程。 ! - 表示不 假设我有 !((A+B) * (A+!B)) 我需要使用除吸收之外的所有规则来简化它。
我知道它是 A * !B + !A * B 但我需要知道到达那里的过程。什么是一个好的起点。我做了几件不同的事情,但我从未想出正确的答案。
Need help have no idea the thought process in doing this kind of simplification.
! - Denotes NOT
Lets say I have !((A+B) * (A+!B)) I need to simplify that using all rules except absortion.
I know it is A * !B + !A * B but I need to know the process to get there. What is a good place to start. I do several different things but I never come up with the right answer.
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(4)
作为简化过程,请使用 德摩根定律 将 NOT 运算符移至括号中。
因此,
下一步(再次使用德摩根定律)将得出您的答案。
我希望这有帮助。
干杯
As a process of simplification use De Morgan's Law to move the NOT operator into the parenthesis.
So it would be
The next step (again use De Morgan's Law) after this would lead to your answer.
I hope this helps.
cheers
卡诺图应该是一个好的开始。
Karnaugh maps should be a good start.
尝试重复应用德摩根定律。
Try repeating applications of DeMorgan's Law.
回复:“什么是一个好的起点” - 使用布尔定律的参考。这是我发现的: http://www.laynetworks.com/Boolean%20Algebra.htm
仔细研究法律,看看哪些法律可以适用;然后选择看起来最有可能朝着正确方向迈出的一步。
通过练习,您将学会能够凭直觉来选择正确的法则;与此同时,您将需要进行一些狩猎和啄食。
Re: "What is a good place to start" - use a reference for boolean laws. Here is one that I found: http://www.laynetworks.com/Boolean%20Algebra.htm
Look through the laws and see which ones can be applied; then pick the one that looks most like it is a step in the right direction.
With practice you will learn to be able to intuit the right laws to select; in the meantime you will need to hunt and peck a little.