计算点以创建曲线或样条线以绘制椭圆

发布于 2024-08-21 10:52:02 字数 2478 浏览 12 评论 0原文

我正在使用 Dundas 地图,需要用描绘一些数据的气泡覆盖地图。我想向地图添加形状以实现此目的。我可以添加一个三角形(或任何直线多边形),如下所示:

public static void AddShape(this MapControl map, List<MapPoint> points, Color color, string name)
{
    if (points[0].X != points[points.Count - 1].X && points[0].Y != points[points.Count - 1].Y)
        points.Add(points[0]);
    var shape = new Shape
    {
        Name = name,
        BorderColor = color,
        BorderStyle = MapDashStyle.Solid,
        BorderWidth = 1,
        Color = Color.FromArgb((int)(255 * (0.3)), color)
    };
    var segments = new[] {new ShapeSegment {Type = SegmentType.Polygon, Length = points.Count}};
    shape.AddSegments(points.ToArray(), segments);
    map.Shapes.Add(shape);
}

public static void AddBermudaTriangle(this MapControl map)
{
    var points = new List<MapPoint>
                     {
                         new MapPoint(-80.15, 26.0667),
                         new MapPoint(-64.75, 32.333),
                         new MapPoint(-66.07, 18.41)
                     };
    map.AddShape(points, Color.Red, "Bermuda Triangle");
}

Bermuda三角形

您可以看到百慕大三角以红色覆盖在地图上。现在我想计算一组点传递给我的 AddShape 方法,该方法将绘制椭圆或圆形。我只需要一个简单的算法来计算给定数量的点的 x 和 y 坐标。也许从代表圆心的给定点开始。例如:

public static void AddCircle(this MapControl map, Point centre, double radius, string name)
{
    var points = new List<MapPoint>();
    const int n = 360;
    for(var i = 0; i < n; i++)
    {
        //calculate x & y using n, radius and centre
        double x = 0;
        double y = 0;
        points.Add(new MapPoint(x, y));
    }
    map.AddShape(points, Color.Red, name);
}

我知道 x,y 计算是简单的三角函数,但我的大脑冻结了。帮助!

编辑(使用 tur!ng 的代码解决):

public static void AddCircle(this MapControl map, Color color, MapPoint centre, double radius, string name)
{
    var points = new List<MapPoint>();
    const int n = 360;
    for(var i = 0; i < n; i++)
    {
        var x = (radius * Math.Cos(i * Math.PI / 180)) + centre.X;
        var y = (radius * Math.Sin(i * Math.PI / 180)) + centre.Y;
        points.Add(new MapPoint(x, y));
    }
    map.AddShape(points, color, name);
}

alt text

蓝色圆圈 (由于罗宾逊网格上的地图投影,格林威治上空的地图会变形。

I am working with Dundas maps and need to overlay the map with bubbles depicting some data. I want to add shapes to the map in order to achieve this. I can add a triangle (or any straight-line-polygon) like this:

public static void AddShape(this MapControl map, List<MapPoint> points, Color color, string name)
{
    if (points[0].X != points[points.Count - 1].X && points[0].Y != points[points.Count - 1].Y)
        points.Add(points[0]);
    var shape = new Shape
    {
        Name = name,
        BorderColor = color,
        BorderStyle = MapDashStyle.Solid,
        BorderWidth = 1,
        Color = Color.FromArgb((int)(255 * (0.3)), color)
    };
    var segments = new[] {new ShapeSegment {Type = SegmentType.Polygon, Length = points.Count}};
    shape.AddSegments(points.ToArray(), segments);
    map.Shapes.Add(shape);
}

public static void AddBermudaTriangle(this MapControl map)
{
    var points = new List<MapPoint>
                     {
                         new MapPoint(-80.15, 26.0667),
                         new MapPoint(-64.75, 32.333),
                         new MapPoint(-66.07, 18.41)
                     };
    map.AddShape(points, Color.Red, "Bermuda Triangle");
}

Bermuda Triangle

You can see that the Bermuda Triangle overlays the map in red. Now I want to calculate a set of points to pass to my AddShape method that would draw an elipse or circle. I just need a simple algorithm for calculating the x and y coordinates of a given number of points. Perhaps starting with a given point that would represent the centre of the circle. For example:

public static void AddCircle(this MapControl map, Point centre, double radius, string name)
{
    var points = new List<MapPoint>();
    const int n = 360;
    for(var i = 0; i < n; i++)
    {
        //calculate x & y using n, radius and centre
        double x = 0;
        double y = 0;
        points.Add(new MapPoint(x, y));
    }
    map.AddShape(points, Color.Red, name);
}

I know that the x,y calculation is simple trigonometry but I'm suffering a brain freeze. Help!

EDIT (Solved using tur!ng's code):

public static void AddCircle(this MapControl map, Color color, MapPoint centre, double radius, string name)
{
    var points = new List<MapPoint>();
    const int n = 360;
    for(var i = 0; i < n; i++)
    {
        var x = (radius * Math.Cos(i * Math.PI / 180)) + centre.X;
        var y = (radius * Math.Sin(i * Math.PI / 180)) + centre.Y;
        points.Add(new MapPoint(x, y));
    }
    map.AddShape(points, color, name);
}

alt text

The blue circle (over Greenwich) is distorted because of the map projection over a Robinson grid.

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(3

蓝海 2024-08-28 10:52:02
  double x = centre.x + radius*Math.cos(2*Math.PI/360 * i);
  double y = centre.y + radius*Math.sin(2*Math.PI/360 * i);

一个圆圈。

  double x = centre.x + radius*Math.cos(2*Math.PI/360 * i);
  double y = centre.y + radius*Math.sin(2*Math.PI/360 * i);

for a circle.

待"谢繁草 2024-08-28 10:52:02

从我很久以前写的一个旧的 C++ 程序复制而来,它仍然在几十个地方运行:

  // Approximate arc with small line segments
  double sa = dp[ix].center.angle(dp[ix].co);
  double ea = dp[ix].center.angle(dp[ix+1].co);
  double r = scale * dp[ix].radius;
  double rot = ea - sa;
  double inc = rot;
  if (dp[ix].dir == ROTCW) rot = -rot;
  if (rot < 0) rot += 2*PI;
  // Compute rotation increment that generates less than 1/4 pixel error
  if (r > 2) inc = 2*acos(1-0.25/r);
  if (inc >= rot || r < 2) addPoint(x, y);
  else {
    int cnt = int(1 + rot / inc);
    inc = rot / cnt;
    if (dp[ix].dir == ROTCW) inc = -inc;
    for (int jx = 0; jx < cnt; ++jx) {
      x = offsx + scale * dp[ix].center.x + r * cos(sa);
      y = offsy + scale * dp[ix].center.y + r * sin(sa);
      addPoint(x, y);
      sa += inc;
    }
  }

acos() 与 Math.Acos() 相同。

Copied from an old C++ program I wrote a long time ago, it still runs at dozens of places:

  // Approximate arc with small line segments
  double sa = dp[ix].center.angle(dp[ix].co);
  double ea = dp[ix].center.angle(dp[ix+1].co);
  double r = scale * dp[ix].radius;
  double rot = ea - sa;
  double inc = rot;
  if (dp[ix].dir == ROTCW) rot = -rot;
  if (rot < 0) rot += 2*PI;
  // Compute rotation increment that generates less than 1/4 pixel error
  if (r > 2) inc = 2*acos(1-0.25/r);
  if (inc >= rot || r < 2) addPoint(x, y);
  else {
    int cnt = int(1 + rot / inc);
    inc = rot / cnt;
    if (dp[ix].dir == ROTCW) inc = -inc;
    for (int jx = 0; jx < cnt; ++jx) {
      x = offsx + scale * dp[ix].center.x + r * cos(sa);
      y = offsy + scale * dp[ix].center.y + r * sin(sa);
      addPoint(x, y);
      sa += inc;
    }
  }

acos() is the same as Math.Acos().

二货你真萌 2024-08-28 10:52:02

回想一下,圆的公式可以表示为

(x/r)**2 + (y/r)**2 = 1

其中 x 和 y 是坐标,r 是半径。

椭圆的公式可以表示为

(x/a)**2 + (y/b)**2 = 1

其中a和b是长半轴和短半轴(没有特定的顺序)。选择a和b给你一个“看起来不错”的椭圆。

您通常希望以相等的角度步长围绕圆选取点,以便对真实的圆做出更好看的多边形近似。为此,您可以使用替换

x = r cos theta
y = r sin theta

并运行从 0 到 2*pi 的 theta 循环。对于椭圆,您将使用

x = a cos theta
y = b sin theta

这会给您一个椭圆,其长半轴和短半轴平行于 X 轴和 Y 轴,并以原点为中心。如果您想要任意方向、任意位置,则需要应用角度 phi 的旋转和平移。任何好的计算机图形学文本都会为您提供必要的方程,最有可能以矩阵形式。

Recall that the formula for a circle may be expressed as

(x/r)**2 + (y/r)**2 = 1

where x and y are coordinates and r is radius.

The formula for an ellipse may be expressed as

(x/a)**2 + (y/b)**2 = 1

where a and b are the semimajor and semiminor axes (in no particular order). Choose a and b to give you an ellipse that "looks good".

You usually want to pick your points around a circle at equal angular steps, to make a better looking polygonal approximation to a true circle. For this, you use the substitutions

x = r cos theta
y = r sin theta

and run your loop for theta from zero to 2*pi. For your ellipse, you'll use

x = a cos theta
y = b sin theta

This gives you an ellipse with the semimajor and semiminor axes parallel to the X and Y axes and centered at the origin. If you want an arbitrary orientation, with an arbitrary position, you'll need to apply a rotation by an angle phi, and a translation. Any good computer graphics text will give you the necessary equations, most likely in matrix form.

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文