如何找到所有包含图形功能的R包?

发布于 2024-08-19 16:14:40 字数 546 浏览 8 评论 0原文

我总是很难找到所有可用的替代方法来生成特定的图表,无论是我已经决定使用的方法(寻找不同的变体)还是我尚未想到的方法。

R 图形手册网站提供了完整的列表R 图形函数的示例,但是对我来说,提供包名称进行搜索更容易(例如,当我想查找条形图时,我怎样才能获得包含 superbarplot 函数的结果集?。让即使我尝试搜索它的包,superbarplot 图表也不会出现在结果中: UsingR)

R-SAS-SPSS 附加模块比较 - 特别是所提供表格中的主题图形,静态 - 给了我这个想法如果有一个地方可以按主题列出所有相关的包,那就太好了。

你对类似的事情有什么想法吗?

I always have difficulty in finding all available alternative ways to produce a specific graph, either one that I have already decided to use (looking for different variations) or one that I have not yet thought of.

The R Graphical Manual site provides a complete list of samples of R's graphics functions, however it's easier for me to search providing a package name (how else -for example- can I get a resultset including superbarplot function, when I want to look for barplots?. Let alone that the superbarplot graph does not appear in the results even if I try searching for it's package: UsingR)

The R-SAS-SPSS Add-on Module Comparison - and especially on topic Graphics, Static in the table provided - gave me the idea that it would be nice to have a place where all relevant packages are listed by topic.

Do you have any idea about something like that?

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(4

辞旧 2024-08-26 16:14:40

如果您有兴趣了解您可以制作的所有可能的图形,您应该了解图形的语法以及(我的)在 R 中的实现:ggplot2

If you're interested in learning about all the possible graphics you can make, you should learn about the grammar of graphics, and (my) implementation of it in R: ggplot2.

太傻旳人生 2024-08-26 16:14:40

您的问题,或者无论如何的一般模式,显然是 sos 包 设计的主要用例。

sos 实际上比你的问题更进一步,通过包识别特定的功能;此外,它还按相关性对结果进行排名(默认情况下,您可以通过“sortby”参数更改默认行为,例如,sortby=“Date”)。

它的工作原理如下:

此包的大部分功能都是通过“< findFn”命令

例如,如果您想要

findFn("scatter plot", maxPages=2, sortby="TotalScore")

散点图相关的所有函数和父包的列表:这会返回一个格式化为 HTML 的数据框表并在默认浏览器中传递(如果您不希望它立即弹出,则只需将函数调用绑定到变量,然后在准备好时调用该变量)

数据框/的最右列HTML 页面是“描述和链接”。单击该列中的条目将在浏览器中打开另一个选项卡(根据浏览器中设置的用户设置首选项),其中包含该功能的完整 R 帮助页面。

例如,上面函数调用的结果显示,以“散点图”格式绘制数据的函数可以在以下包中找到:

  • ade4 (function: scatter)
  • IDPmisc (functions: ipairs, iplots)
  • GGally (function: ggally_points)
  • PerformanceAnalytics(功能:
    Chart.Scatter)
  • mclust (function: clPairs)

另一个例子:

findFn("boxplot", maxPages=2, sortby="TotalScore")

识别这些(以及其他)用于绘制箱线图的包/函数:

  • sfsmisc (function: boxplot.matrix)
  • aplpack (function: boxplot2D)
  • NADA (function: boxplot-methods)
  • StatDA (函数:rg.boxplot)
  • plotrix(函数:gap.boxplot)
  • gplots(函数:boxplot.n)
  • multcompView(函数:
    multcompBoxplot)
  • 寡核苷酸(功能:箱线图)

Your question, or the general pattern anyway, was clearly a primary use case for the design of the sos package.

sos actually goes one step further that your question requires by identifying particular functions with packages; in addition, it ranks the results by relevance (by default, you can change the default behavior via the "sortby" parameter, e.g., sortby="Date")

Here's how it works:

most of this package's functionality is exposed via the "findFn" command

for instance, if you want a list of all functions and the parent package related to scatter plots:

findFn("scatter plot", maxPages=2, sortby="TotalScore")

This returns a dataframe formatted as HTML table and delivered in your default browser (if you don't want it to pop-up immediately, then just bind the function call to a variable and then call the variable when you're ready)

The right-most column of the dataframe/HTML page is "Description and Link". Clicking an entry in that column opens another tab in your browser (according to the user-set preferences set in your browser) with the complete R help page for that function.

The results from the function call above show, for instance, that the functions for plotting data in a 'scatter plot' format are found in the following packages:

  • ade4 (function: scatter)
  • IDPmisc (functions: ipairs, iplots)
  • GGally (function: ggally_points)
  • PerformanceAnalytics (function:
    chart.Scatter)
  • mclust (function: clPairs)

Another example:

findFn("boxplot", maxPages=2, sortby="TotalScore")

identifies these (among others) packages/functions for plotting boxplots:

  • sfsmisc (function: boxplot.matrix)
  • aplpack (function: boxplot2D)
  • NADA (function: boxplot-methods)
  • StatDA (function: rg.boxplot)
  • plotrix (function: gap.boxplot)
  • gplots (function: boxplot.n)
  • multcompView (function:
    multcompBoxplot)
  • oligo (function: boxplot)
只是在用心讲痛 2024-08-26 16:14:40

您看过R Graph Gallery吗?

除此之外,您可能必须索引 CRAN 包的所有源代码才能有效搜索......

Have you seen the R Graph Gallery ?

Other than that, you may have to index all the source code of CRAN packages to search efficiently...

<逆流佳人身旁 2024-08-26 16:14:40

这些都是很好的记忆慢跑者。我赞同 ggplot2 的建议,也建议查看 CRAN 视图:

http://cran.r- project.org/web/views/

http://cran.fhcrc。 org/web/views/Graphics.html

(这个镜像在美国西海岸似乎更快)


http://dataspora.com/archive/2009/seminar/Survey_of_R_Graphics_by_Driscoll_Dataspora_Jun2009.pdf


http://zoonek2.free.fr/UNIX/48_R/04.html

(可能是世界上最长的网页)

http://www.stat.auckland.ac.nz/~ihaka/120/lectures.html

Ihaka 的讲义

these are good memory-joggers. I second the ggplot2 recommend, also recommend looking thru CRAN views:

http://cran.r-project.org/web/views/

http://cran.fhcrc.org/web/views/Graphics.html

(this mirror seems faster in west coast US)


http://dataspora.com/archive/2009/seminar/Survey_of_R_Graphics_by_Driscoll_Dataspora_Jun2009.pdf


http://zoonek2.free.fr/UNIX/48_R/04.html

(possibly world's longest webpage)

http://www.stat.auckland.ac.nz/~ihaka/120/lectures.html

Ihaka's lectures notes

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文