检测闭合贝塞尔曲线中的自交叉

发布于 2024-08-19 13:17:54 字数 589 浏览 9 评论 0原文

我通过将三次贝塞尔曲线修补在一起创建了一个“斑点”形状(下面的屏幕截图)。我希望能够检测曲线与自身或另一条曲线交叉的情况,并且想知道是否有推荐的方法或已知的算法可以做到这一点?

我的一个想法是使用 FlatteningPathIterator 将形状分解为直线段,然后检测给定的线段是否与另一个线段交叉,但我感兴趣的是是否有更好的方法(如这将具有二次性能)。如果我确实采用这种方法,Java中是否有库函数可以检测两条线段是否重叠?

谢谢。

无交叉

无交叉 http://www.freeimagehosting.net/uploads/7ad585414d.png

跨界

跨界 http://www.freeimagehosting.net/uploads/823748f8bb .png

I've created a "blob" shape by patching cubic Bezier curves together (screenshot below). I'd like to be able to detect the situation where a curve has crossed over either itself or another curve and was wondering if there's a recommended approach or known algorithm for doing this?

One idea I had was to use a FlatteningPathIterator to decompose the shape into straight line segments and then detect whether a given segment crosses with another one, but I'd be interested in whether there's a better approach (as this will have quadratic performance). If I do pursue this method are there library functions in Java to detect whether two line segments are overlapping?

Thanks.

No Cross-Over

No Crossover http://www.freeimagehosting.net/uploads/7ad585414d.png

Cross-Over

Crossover http://www.freeimagehosting.net/uploads/823748f8bb.png

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(5

遗失的美好 2024-08-26 13:17:54

我实际上找到了一个工作解决方案,它使用内置的 Java2D 函数,并且速度非常快...

只需从曲线中创建一个 Path2D,然后从 Path2D 中创建一个区域并调用方法 Area.isSingular();

它有效......请参阅这个小例子。

import java.awt.Color;
import java.awt.Dimension;
import java.awt.Graphics;
import java.awt.Graphics2D;
import java.awt.geom.Area;
import java.awt.geom.CubicCurve2D;
import java.awt.geom.Path2D;

import javax.swing.JFrame;
import javax.swing.JPanel;



public class Test {
@SuppressWarnings("serial")
public static void main(String[] args) {
    JFrame f = new JFrame("Test");
    JPanel c = new JPanel() {
        Area a;
        Path2D p;
        {
            p = new Path2D.Double();
            p.append(new CubicCurve2D.Double(0, 0, 100, 0, 150, 50, 200, 100), true);
            p.append(new CubicCurve2D.Double(200, 100, 200, 150, 150,0, 50, 100), true);
            p.append(new CubicCurve2D.Double(100, 100, 100, 50, 50, 50, 0, 0), true);
            a = new Area(p);
            setPreferredSize(new Dimension(300, 300));
        }
        @Override
        protected void paintComponent(Graphics g) {
            g.setColor(Color.black);
            ((Graphics2D)g).fill(p);
            System.out.println(a.isSingular());
        }
    };
    f.setContentPane(c);
    f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
    f.pack();
    f.setVisible(true);
}
}

I have actually found a working solution which is using built in Java2D functions and is EXTREMELY fast...

Simply create a Path2D out of your curves, then create an area out of your Path2D and invoke the method Area.isSingular();

It works... See this small example.

import java.awt.Color;
import java.awt.Dimension;
import java.awt.Graphics;
import java.awt.Graphics2D;
import java.awt.geom.Area;
import java.awt.geom.CubicCurve2D;
import java.awt.geom.Path2D;

import javax.swing.JFrame;
import javax.swing.JPanel;



public class Test {
@SuppressWarnings("serial")
public static void main(String[] args) {
    JFrame f = new JFrame("Test");
    JPanel c = new JPanel() {
        Area a;
        Path2D p;
        {
            p = new Path2D.Double();
            p.append(new CubicCurve2D.Double(0, 0, 100, 0, 150, 50, 200, 100), true);
            p.append(new CubicCurve2D.Double(200, 100, 200, 150, 150,0, 50, 100), true);
            p.append(new CubicCurve2D.Double(100, 100, 100, 50, 50, 50, 0, 0), true);
            a = new Area(p);
            setPreferredSize(new Dimension(300, 300));
        }
        @Override
        protected void paintComponent(Graphics g) {
            g.setColor(Color.black);
            ((Graphics2D)g).fill(p);
            System.out.println(a.isSingular());
        }
    };
    f.setContentPane(c);
    f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
    f.pack();
    f.setVisible(true);
}
}
贵在坚持 2024-08-26 13:17:54

您可以做的是采用 贝塞尔曲线 的矢量函数:

alt text

并将成对组成曲线的不同贝塞尔曲线等同起来,看看 [ 中是否有解决方案0,1]。当然,这在重叠部分属于不同曲线的情况下会有所帮助。在一条曲线与自身相交的情况下它不会有帮助...

编辑:

我引用了二次曲线函数,所以这是三次曲线:
alt text

求解方程确实很难。作为替代方案,我建议使用更宽松的方法。您可以做的是将每条曲线“拆分”为 n 个点,并使用上面的函数计算它们的位置。然后,对于每个点,您将考虑任意半径的圆盘(取决于曲线的大小)并搜索这些圆盘的交点。您将需要忽略连续圆盘的相交,因为相交只是因为它们在单个曲线段上彼此距离太近。

此方法应该非常快,但如果选择“错误”参数(n 大小和半径),则可能会失去准确性,但您可以进行实验。

What you can do is take the vector function for the Bezier curve :

alt text

And equate the different bezier curves that make up your curve in pairs to see if there is a solution in [0,1]. Of course that would help in the case where the parts that overlap are part of different curves. It wont help in the case where one curve intersects itself...

EDIT :

I quoted the quadratic curve function so this is the cubic:
alt text

And it is indeed hard to solve the equation. As an alternative i propose to use a more loose method. What you can do is "split" each curve into n points and calculate their position using the function above. Then for each of those points you will consider a disk of arbitrary radius (depending on the sizes of the curves) and search for intersections of these disks. You will need to disregard intersections of sequential disks since the intersect only because they lie too close to each other on a single curve segment.

This method should be very fast but you can lose accuracy if you select "wrong" parameters (the n size and the radius) but you can experiment.

无法回应 2024-08-26 13:17:54

获得不错的近似值

  • 我认为您可以通过使用 FlatteningPathIterator 获得近似斑点的多边形来
  • 。将多边形周围的路径划分为非递减 y 的子路径(即,向下路径 - 想象一下仅使用铅笔向下的笔触绘制多边形)。
  • 一致地沿着向下的路径行走,仅将每个线段与至少在 y 维度上重叠的线段进行比较。

这非常简单,并且避免了您担心的 O(n2) 性能。对于普通的基本斑点(如插图中的斑点),只有两条向下的路径。

您可以通过保持向下路径水平排序来进一步减少比较次数(也许是一个TreeSet)。

仅比较 y 维度中重叠的线段的另一种方法是使用 区间树

I think you can get a decent approximation by

  • Using FlatteningPathIterator to get a polygon that approximates the blob.
  • Dividing the path around the polygon into subpaths of nondecreasing y (that is, downward paths—imagine drawing the polygon using only downward strokes of the pencil).
  • Walking the downward paths in concert, comparing each line segment only with line segments that at least overlap in the y dimension.

This is pretty simple and avoids the O(n2) performance you're worried about. For your average basic blob, like the ones in your illustration, there are only two downward paths.

You can reduce the number of comparisons further by keeping the downward paths sorted horizontally as you go (a TreeSet, perhaps).

Another way to compare only line segments that overlap in the y dimension is to use an interval tree.

深陷 2024-08-26 13:17:54

我不确定这是否有帮助,但它类似于多边形渲染中的问题,其中对于每条扫描线 Y,都有一个(X,标志)值对的数组,其中线与该扫描线交叉。

沿着形状中的每条曲线,以及它与每条扫描线 Y 相交的位置,记录 (X, flag),其中如果向“北”行则 flag = 1,如果向“南”行则 flag = -1。

如果在每条扫描线上按 X 顺序考虑这些对,并保留标志值的运行总和,则如果曲线是顺时针方向,两个 X 值跨度之间的总和将为正值,如果曲线是逆时针方向,则两个 X 值跨度之间的总和将为负值。

如果所有跨度均为 +1 或所有跨度均为 -1,则曲线不会与自身相交。

编辑:这需要与图形穿过的扫描线数量成线性关系的时间。然后生成的数据结构可用于渲染图形。

I'm not sure if this helps, but it is similar to a problem in polygon rendering, where you have, for each scan line Y, an array of (X, flag) value pairs where lines cross that scan line.

Follow each curve in the shape, and where it crosses each scan line Y, record (X, flag) where flag = 1 if going "north" and flag = -1 if going "south".

If on each scan line you consider the pairs in X order, and keep a running sum of the flag values, then the sum between a span of two X values will be positive if the curve is clockwise, and negative if the curve is counterclockwise.

If all spans are +1 or all spans are -1, the curve does not cross itself.

Edit: this takes time linear in the number of scan lines crossed by the figure. Then the resulting data structure can be used to render the figure.

唱一曲作罢 2024-08-26 13:17:54

这里有一些递归算法来自 教授的讲座。 Georg Umlauf

INTERSECT(b_0,...,b_m;c_0,...,c_n, EPSILON)
  if [min b_i, max b_i] AND [min c_i, max c_i] != EMPTY { // check bounding boxes
    if m*(m-1)*max||delta^2(b_i)|| > EPSILON) { // check flatness
      Calculate b'_0, ..., b'_2m over [0, 0.5, 1] with the deCasteljau algorithm;
      INTERSECT(b'_0,...,b'_m;c_0,...,c_n;EPSILON);
      INTERSECT(b'_m,...,b'_2m;c_0,...,c_n;EPSILON);
    }
  }
  else {
    if (n*n-1)*max||delta^2(c_i)|| > EPSILON then {
      Calculate c'_0, ..., c'_2m over [0, 0.5, 1] with the deCasteljau algorithm;
      INTERSECT(b_0,...,b_m;c'_0,...,c'_n;EPSILON);
      INTERSECT(b_0,...,b_m;c'_n,...,c'_2n;EPSILON);
    }
    else {
      Intersect line segments b_0b_m and c_0c_n;
    }
  }

其中 delta^2(b_i) 定义为 b_{i+2} - 2*b_{i+1} + b_i

Here some recursive algorithm from a lecture of Prof. Georg Umlauf

INTERSECT(b_0,...,b_m;c_0,...,c_n, EPSILON)
  if [min b_i, max b_i] AND [min c_i, max c_i] != EMPTY { // check bounding boxes
    if m*(m-1)*max||delta^2(b_i)|| > EPSILON) { // check flatness
      Calculate b'_0, ..., b'_2m over [0, 0.5, 1] with the deCasteljau algorithm;
      INTERSECT(b'_0,...,b'_m;c_0,...,c_n;EPSILON);
      INTERSECT(b'_m,...,b'_2m;c_0,...,c_n;EPSILON);
    }
  }
  else {
    if (n*n-1)*max||delta^2(c_i)|| > EPSILON then {
      Calculate c'_0, ..., c'_2m over [0, 0.5, 1] with the deCasteljau algorithm;
      INTERSECT(b_0,...,b_m;c'_0,...,c'_n;EPSILON);
      INTERSECT(b_0,...,b_m;c'_n,...,c'_2n;EPSILON);
    }
    else {
      Intersect line segments b_0b_m and c_0c_n;
    }
  }

where delta^2(b_i) is defined as b_{i+2} - 2*b_{i+1} + b_i.

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文