根据使用频率随机生成字母?

发布于 2024-08-19 13:15:12 字数 126 浏览 10 评论 0原文

如何根据常用语音中的使用频率随机生成字母?

任何伪代码都值得赞赏,但如果用 Java 实现就更棒了。否则,只需朝正确的方向戳一下就会有所帮助。

注意:我不需要生成使用频率 - 我确信我可以很容易地查找到它。

How can I randomly generate letters according to their frequency of use in common speech?

Any pseudo-code appreciated, but an implementation in Java would be fantastic. Otherwise just a poke in the right direction would be helpful.

Note: I don't need to generate the frequencies of usage - I'm sure I can look that up easily enough.

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(5

被翻牌 2024-08-26 13:15:12

我假设您将频率存储为 0 到 1 之间的浮点数,总计为 1。

首先,您应该准备一个累积频率表,即该字母及其之前所有字母的频率之和。

为了简化,如果您从这个频率分布开始:

A  0.1
B  0.3
C  0.4
D  0.2

您的累积频率表将是:

A  0.1
B  0.4 (= 0.1 + 0.3)
C  0.8 (= 0.1 + 0.3 + 0.4)
D  1.0 (= 0.1 + 0.3 + 0.4 + 0.2)

现在生成一个 0 到 1 之间的随机数,并查看该数字在此列表中的位置。选择累积频率最小且大于随机数的字母。一些例子:

假设您随机选择 0.612。它位于 0.4 和 0.8 之间,即 B 和 C 之间,所以你会选择 C。

如果你的随机数是 0.039,它在 0.1 之前,即在 A 之前,所以选择 A。

我希望这是有道理的,否则请随意要求澄清!

I am assuming that you store the frequencies as floating point numbers between 0 and 1 that total to make 1.

First you should prepare a table of cumulative frequencies, i.e. the sum of the frequency of that letter and all letters before it.

To simplify, if you start with this frequency distribution:

A  0.1
B  0.3
C  0.4
D  0.2

Your cumulative frequency table would be:

A  0.1
B  0.4 (= 0.1 + 0.3)
C  0.8 (= 0.1 + 0.3 + 0.4)
D  1.0 (= 0.1 + 0.3 + 0.4 + 0.2)

Now generate a random number between 0 and 1 and see where in this list that number lies. Choose the letter that has the smallest cumulative frequency larger than your random number. Some examples:

Say you randomly pick 0.612. This lies between 0.4 and 0.8, i.e. between B and C, so you'd choose C.

If your random number was 0.039, that comes before 0.1, i.e. before A, so choose A.

I hope that makes sense, otherwise feel free to ask for clarifications!

执手闯天涯 2024-08-26 13:15:12

一种快速的方法是生成一个字母列表,其中每个字母根据其频率出现在列表中。假设,如果“e”的使用率为 25.6%,并且您的列表长度为 1000,则它将有 256 个“e”。

然后,您可以使用 (int) (Math.random() * 1000) 从列表中随机选择点,生成 0 到 999 之间的随机数。

One quick way to do it would be to generate a list of letters, where each letter appeared in the list in accordance with its frequency. Say, if "e" was used 25.6% of the time, and your list had length 1000, it would have 256 "e"s.

Then you could just randomly pick spots from the list by using (int) (Math.random() * 1000) to generate random numbers between 0 and 999.

£烟消云散 2024-08-26 13:15:12

我要做的是将相对频率缩放为浮点数,使它们的总和为 1.0。然后,我将创建一个包含每个字母的累积总数的数组,即必须位于顶部才能获得该字母及其“下方”的所有数字。假设A的频率为10%,b为2%,z为1%;那么你的表将如下所示:

0.000 A ; from 0% to 10% gets you an A
0.100 B ; above 10% is at least a B
0.120 C ; 12% for C...
...
0.990 Z ; if your number is >= 99% then you get a Z

然后你自己生成一个 0.0 到 1.0 之间的随机数,并在数组中进行二分搜索,查找第一个小于随机数的数字。然后选择该位置的字母。完毕。

What I would do is scale the relative frequencies as floating point numbers such that their sum is 1.0. Then I would create an array of the cumulative totals per letter, i.e. the number that must be topped to get that letter and all those "below" it. Say the frequency of A is 10%, b is 2% and z is 1%; then your table would look something like this:

0.000 A ; from 0% to 10% gets you an A
0.100 B ; above 10% is at least a B
0.120 C ; 12% for C...
...
0.990 Z ; if your number is >= 99% then you get a Z

Then you generate yourself a random number between 0.0 and 1.0 and do a binary search in the array for the first number smaller than your random number. Then pick the letter at that position. Done.

不知在何时 2024-08-26 13:15:12

甚至不是伪代码,但可能的方法如下:

令 p1, p2, ..., pk 为您想要匹配的频率。

  1. 计算累积频率: p1, p1+p2, p1+p2+p3, ... , 1
  2. 生成随机均匀 (0,1) 数 x
  3. 检查累积频率 x 属于哪个区间:如果介于之间,例如、 p1+..+pi 和 p1+...+pi+p(i+1),然后输出第 (i+1) 个字母

根据您如何实现区间查找,如果 p1 ,p2,... 按降序排序,因为您通常会更快找到包含 x 的区间。

Not even a pseudo-code, but a possible approach is as follows:

Let p1, p2, ..., pk be the frequencies that you want to match.

  1. Calculate the cumulative frequencies: p1, p1+p2, p1+p2+p3, ... , 1
  2. Generate a random uniform (0,1) number x
  3. Check which interval of the cumulative frequencies x belongs to: if it is between, say, p1+..+pi and p1+...+pi+p(i+1), then output the (i+1)st letter

Depending on how you implement the interval-finding, the procedure is usually more efficient if the p1,p2,... are sorted in decreasing order, because you will usually find the interval containing x sooner.

晨与橙与城 2024-08-26 13:15:12

使用二叉树为您提供了一种很好、干净的方法来找到正确的条目。在这里,您从频率图开始,其中键是符号(英文字母),值是它们出现的频率。这会被反转,并创建一个 NavigableMap,其中键是累积概率,值是符号。这使得查找变得容易。

  private final Random generator = new Random();

  private final NavigableMap<Float, Integer> table = 
    new TreeMap<Float, Integer>();

  private final float max;

  public Frequency(Map<Integer, Float> frequency)
  {
    float total = 0;
    for (Map.Entry<Integer, Float> e : frequency.entrySet()) {
      total += e.getValue();
      table.put(total, e.getKey());
    }
    max = total;
  }

  /** 
   * Choose a random symbol. The choices are weighted by frequency.
   */ 
  public int roll()
  {
    Float key = generator.nextFloat() * max;
    return table.higherEntry(key).getValue();
  }

Using a binary tree gives you a nice, clean way to find the right entry. Here, you start with a frequency map, where the keys are the symbols (English letters), and the values are the frequency of their occurrence. This gets inverted, and a NavigableMap is created where the keys are cumulative probability, and the values are symbols. That makes the lookup easy.

  private final Random generator = new Random();

  private final NavigableMap<Float, Integer> table = 
    new TreeMap<Float, Integer>();

  private final float max;

  public Frequency(Map<Integer, Float> frequency)
  {
    float total = 0;
    for (Map.Entry<Integer, Float> e : frequency.entrySet()) {
      total += e.getValue();
      table.put(total, e.getKey());
    }
    max = total;
  }

  /** 
   * Choose a random symbol. The choices are weighted by frequency.
   */ 
  public int roll()
  {
    Float key = generator.nextFloat() * max;
    return table.higherEntry(key).getValue();
  }
~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文