This article explains the basic implementation in length:
The goal of this blog post is to show the fundamentals of A* through a really simple C# implementation.
It also points to better implementations, more suitable for production use:
As for ways to find better routes, there are plenty of C# examples around that are far better and richer than this one. CastorTiu has a really nice demo solution on CodeProject, A* algorithm implementation in C#, that animates the search algorithm and allows the user to tweak a few settings. [...]
public static void unitTest_AStar()
{
char[][] matrix = new char[][] { new char[] {'-', 'S', '-', '-', 'X'},
new char[] {'-', 'X', 'X', '-', '-'},
new char[] {'-', '-', '-', 'X', '-'},
new char[] {'X', '-', 'X', 'E', '-'},
new char[] {'-', '-', '-', '-', 'X'}};
//looking for shortest path from 'S' at (0,1) to 'E' at (3,3)
//obstacles marked by 'X'
int fromX = 0, fromY = 1, toX = 3, toY = 3;
matrixNode endNode = AStar(matrix, fromX, fromY, toX, toY);
//looping through the Parent nodes until we get to the start node
Stack<matrixNode> path = new Stack<matrixNode>();
while (endNode.x != fromX || endNode.y != fromY)
{
path.Push(endNode);
endNode = endNode.parent;
}
path.Push(endNode);
Console.WriteLine("The shortest path from " +
"(" + fromX + "," + fromY + ") to " +
"(" + toX + "," + toY + ") is: \n");
while (path.Count > 0)
{
matrixNode node = path.Pop();
Console.WriteLine("(" + node.x + "," + node.y + ")");
}
}
public class matrixNode
{
public int fr = 0, to = 0, sum = 0;
public int x, y;
public matrixNode parent;
}
public static matrixNode AStar(char[][] matrix, int fromX, int fromY, int toX, int toY)
{
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// in this version an element in a matrix can move left/up/right/down in one step, two steps for a diagonal move.
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//the keys for greens and reds are x.ToString() + y.ToString() of the matrixNode
Dictionary<string, matrixNode> greens = new Dictionary<string, matrixNode>(); //open
Dictionary<string, matrixNode> reds = new Dictionary<string, matrixNode>(); //closed
matrixNode startNode = new matrixNode { x = fromX, y = fromY };
string key = startNode.x.ToString() + startNode.x.ToString();
greens.Add(key, startNode);
Func<KeyValuePair<string, matrixNode>> smallestGreen = () =>
{
KeyValuePair<string, matrixNode> smallest = greens.ElementAt(0);
foreach (KeyValuePair<string, matrixNode> item in greens)
{
if (item.Value.sum < smallest.Value.sum)
smallest = item;
else if (item.Value.sum == smallest.Value.sum
&& item.Value.to < smallest.Value.to)
smallest = item;
}
return smallest;
};
//add these values to current node's x and y values to get the left/up/right/bottom neighbors
List<KeyValuePair<int, int>> fourNeighbors = new List<KeyValuePair<int, int>>()
{ new KeyValuePair<int, int>(-1,0),
new KeyValuePair<int, int>(0,1),
new KeyValuePair<int, int>(1, 0),
new KeyValuePair<int, int>(0,-1) };
int maxX = matrix.GetLength(0);
if (maxX == 0)
return null;
int maxY = matrix[0].Length;
while (true)
{
if (greens.Count == 0)
return null;
KeyValuePair<string, matrixNode> current = smallestGreen();
if (current.Value.x == toX && current.Value.y == toY)
return current.Value;
greens.Remove(current.Key);
reds.Add(current.Key, current.Value);
foreach (KeyValuePair<int, int> plusXY in fourNeighbors)
{
int nbrX = current.Value.x + plusXY.Key;
int nbrY = current.Value.y + plusXY.Value;
string nbrKey = nbrX.ToString() + nbrY.ToString();
if (nbrX < 0 || nbrY < 0 || nbrX >= maxX || nbrY >= maxY
|| matrix[nbrX][nbrY] == 'X' //obstacles marked by 'X'
|| reds.ContainsKey(nbrKey))
continue;
if (greens.ContainsKey(nbrKey))
{
matrixNode curNbr = greens[nbrKey];
int from = Math.Abs(nbrX - fromX) + Math.Abs(nbrY - fromY);
if (from < curNbr.fr)
{
curNbr.fr = from;
curNbr.sum = curNbr.fr + curNbr.to;
curNbr.parent = current.Value;
}
}
else
{
matrixNode curNbr = new matrixNode { x = nbrX, y = nbrY };
curNbr.fr = Math.Abs(nbrX - fromX) + Math.Abs(nbrY - fromY);
curNbr.to = Math.Abs(nbrX - toX) + Math.Abs(nbrY - toY);
curNbr.sum = curNbr.fr + curNbr.to;
curNbr.parent = current.Value;
greens.Add(nbrKey, curNbr);
}
}
}
}
In the function AStar, we start by creating a new matrixNode, with the parameters fromX and fromY. A matrixNode has properties, "fr" which is the distance of any given matrixNode from the starting node, a "to" property which is the distance of a given matrixNode from the destination matrixNode (would be 'E' at coordinates (3,3) in the unitTest's example), and a property "sum" which is the sum of "to" and "fr". The property parent, is a reference to the matrixNode that the given node was moved to in the path for reaching from the start node to the end node. The dictionaries greens and reds, are the openSet and closedSet respectively as described in the A* search algorithm page on Wikipedia. The general idea with these sets, is that we are trying to find the matrixNode in the green/open set which has the lowest "sum" value, as "sum" was the sum of the distances of the node from the start node at (fromX,fromY) and the end node at (toX, toY)
public static void unitTest_AStar()
{
char[][] matrix = new char[][] { new char[] {'-', 'S', '-', '-', 'X'},
new char[] {'-', 'X', 'X', '-', '-'},
new char[] {'-', '-', '-', 'X', '-'},
new char[] {'X', '-', 'X', 'E', '-'},
new char[] {'-', '-', '-', '-', 'X'}};
//looking for shortest path from 'S' at (0,1) to 'E' at (3,3)
//obstacles marked by 'X'
int fromX = 0, fromY = 1, toX = 3, toY = 3;
matrixNode endNode = AStar(matrix, fromX, fromY, toX, toY);
//looping through the Parent nodes until we get to the start node
Stack<matrixNode> path = new Stack<matrixNode>();
while (endNode.x != fromX || endNode.y != fromY)
{
path.Push(endNode);
endNode = endNode.parent;
}
path.Push(endNode);
Console.WriteLine("The shortest path from " +
"(" + fromX + "," + fromY + ") to " +
"(" + toX + "," + toY + ") is: \n");
while (path.Count > 0)
{
matrixNode node = path.Pop();
Console.WriteLine("(" + node.x + "," + node.y + ")");
}
}
public class matrixNode
{
public int fr = 0, to = 0, sum = 0;
public int x, y;
public matrixNode parent;
}
public static matrixNode AStar(char[][] matrix, int fromX, int fromY, int toX, int toY)
{
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// in this version an element in a matrix can move left/up/right/down in one step, two steps for a diagonal move.
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//the keys for greens and reds are x.ToString() + y.ToString() of the matrixNode
Dictionary<string, matrixNode> greens = new Dictionary<string, matrixNode>(); //open
Dictionary<string, matrixNode> reds = new Dictionary<string, matrixNode>(); //closed
matrixNode startNode = new matrixNode { x = fromX, y = fromY };
string key = startNode.x.ToString() + startNode.x.ToString();
greens.Add(key, startNode);
Func<KeyValuePair<string, matrixNode>> smallestGreen = () =>
{
KeyValuePair<string, matrixNode> smallest = greens.ElementAt(0);
foreach (KeyValuePair<string, matrixNode> item in greens)
{
if (item.Value.sum < smallest.Value.sum)
smallest = item;
else if (item.Value.sum == smallest.Value.sum
&& item.Value.to < smallest.Value.to)
smallest = item;
}
return smallest;
};
//add these values to current node's x and y values to get the left/up/right/bottom neighbors
List<KeyValuePair<int, int>> fourNeighbors = new List<KeyValuePair<int, int>>()
{ new KeyValuePair<int, int>(-1,0),
new KeyValuePair<int, int>(0,1),
new KeyValuePair<int, int>(1, 0),
new KeyValuePair<int, int>(0,-1) };
int maxX = matrix.GetLength(0);
if (maxX == 0)
return null;
int maxY = matrix[0].Length;
while (true)
{
if (greens.Count == 0)
return null;
KeyValuePair<string, matrixNode> current = smallestGreen();
if (current.Value.x == toX && current.Value.y == toY)
return current.Value;
greens.Remove(current.Key);
reds.Add(current.Key, current.Value);
foreach (KeyValuePair<int, int> plusXY in fourNeighbors)
{
int nbrX = current.Value.x + plusXY.Key;
int nbrY = current.Value.y + plusXY.Value;
string nbrKey = nbrX.ToString() + nbrY.ToString();
if (nbrX < 0 || nbrY < 0 || nbrX >= maxX || nbrY >= maxY
|| matrix[nbrX][nbrY] == 'X' //obstacles marked by 'X'
|| reds.ContainsKey(nbrKey))
continue;
if (greens.ContainsKey(nbrKey))
{
matrixNode curNbr = greens[nbrKey];
int from = Math.Abs(nbrX - fromX) + Math.Abs(nbrY - fromY);
if (from < curNbr.fr)
{
curNbr.fr = from;
curNbr.sum = curNbr.fr + curNbr.to;
curNbr.parent = current.Value;
}
}
else
{
matrixNode curNbr = new matrixNode { x = nbrX, y = nbrY };
curNbr.fr = Math.Abs(nbrX - fromX) + Math.Abs(nbrY - fromY);
curNbr.to = Math.Abs(nbrX - toX) + Math.Abs(nbrY - toY);
curNbr.sum = curNbr.fr + curNbr.to;
curNbr.parent = current.Value;
greens.Add(nbrKey, curNbr);
}
}
}
}
发布评论
评论(2)
本文详细解释了基本实现:
它还指出了更好的实现,更适合生产使用:
This article explains the basic implementation in length:
It also points to better implementations, more suitable for production use:
在函数 AStar 中,我们首先创建一个新的矩阵节点,参数为 fromX 和 fromY。矩阵节点具有属性,“fr”是任何给定矩阵节点到起始节点的距离,“to”属性是给定矩阵节点到目标矩阵节点的距离(在坐标(3,3处为“E”) )在unitTest的示例中),以及属性“sum”,它是“to”和“fr”的总和。属性parent是对matrixNode的引用,给定节点在从起始节点到结束节点的路径中被移动到该矩阵节点。字典绿色和红色分别是 openSet 和 closeSet,如 A* 搜索算法 页面。这些集合的总体思想是,我们试图在绿色/开放集合中找到具有最低“总和”值的矩阵节点,因为“总和”是节点距起始节点 ( fromX,fromY) 和结束节点 (toX, toY)
In the function AStar, we start by creating a new matrixNode, with the parameters fromX and fromY. A matrixNode has properties, "fr" which is the distance of any given matrixNode from the starting node, a "to" property which is the distance of a given matrixNode from the destination matrixNode (would be 'E' at coordinates (3,3) in the unitTest's example), and a property "sum" which is the sum of "to" and "fr". The property parent, is a reference to the matrixNode that the given node was moved to in the path for reaching from the start node to the end node. The dictionaries greens and reds, are the openSet and closedSet respectively as described in the A* search algorithm page on Wikipedia. The general idea with these sets, is that we are trying to find the matrixNode in the green/open set which has the lowest "sum" value, as "sum" was the sum of the distances of the node from the start node at (fromX,fromY) and the end node at (toX, toY)