如何解算术数列?
如何:
(1 + 2 + ... + N) / N = (N + 1) / 2
或
(1 + 2 + ... + N + N) / N = (N + 3) / 2
我的教科书说这是初等数学,但我忘记了找到答案的方法。
How does:
(1 + 2 + ... + N) / N = (N + 1) / 2
or
(1 + 2 + ... + N + N) / N = (N + 3) / 2
My textbook says this is elementary math but I have forgotten the method for finding the answer.
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(3)
您给出的示例称为 算术序列,而不是 几何序列。
让自己相信结果正确的一个简单方法是向后写出相同的序列,将其与自身相加,然后除以 2:
The example you gave is called an arithmetic sequence, not a geometric sequence.
A simple way to convince yourself that the result is correct is to write the same sequence backwards, add it to itself, and divide by 2:
数学归纳法。 http://en.wikipedia.org/wiki/Mathematical_induction#Example
第二个主张您从第一个声明中只需添加
N / N = 1 = 2 / 2
即可。Mathematical induction. http://en.wikipedia.org/wiki/Mathematical_induction#Example
The second claim you stated follows from the first by just adding
N / N = 1 = 2 / 2
.n 个自然数的和表示为 n(n+1)/2。
因此,给定您正确提到的第一个问题,输出将为 (n+1)/2。
对于第二个问题。
解为 (n(n+1)/2n)+n/n = (n+1)/2 +1 = (n+3)/2。您会观察到实际序列是 n 个自然数加 n 的和。这就是我分割条款的方式。
Sum of n natural numbers is denoted by n(n+1)/2.
So the given the first problem you have correctly mentioned the output will (n+1)/2.
for the second problem.
the solution is (n(n+1)/2n)+n/n = (n+1)/2 +1 = (n+3)/2. You would observer actual series is sum of n natural numbers plus n. So thats how i split the terms.