时间复杂度/MySQL性能分析

发布于 2024-08-18 03:57:35 字数 2046 浏览 9 评论 0原文

设置(MySQL):

create table inRelation(
    party1 integer unsigned NOT NULL,
    party2 integer unsigned NOT NULL,
    unique (party1,party2)
);

insert into inRelation(party1,party2) values(1,2),(1,3),(2,3),(1,4),(2,5),(3,5),(1,6),(1,7),(2,7),(5,7);

mysql> select * from inRelation a
    -> join inRelation b on a.party2=b.party1
    -> join inRelation c on b.party2=c.party1
    -> where a.party1=1 and c.party2=7;
+--------+--------+--------+--------+--------+--------+
| party1 | party2 | party1 | party2 | party1 | party2 |
+--------+--------+--------+--------+--------+--------+
|      1 |      2 |      2 |      5 |      5 |      7 |
|      1 |      3 |      3 |      5 |      5 |      7 |
+--------+--------+--------+--------+--------+--------+
2 rows in set (0.00 sec)

mysql> explain select * from inRelation a
    -> join inRelation b on a.party2=b.party1
    -> join inRelation c on b.party2=c.party1
    -> where a.party1=1 and c.party2=7;
+----+-------------+-------+--------+---------------+--------+---------+---------------------+------+-------------+
| id | select_type | table | type   | possible_keys | key    | key_len | ref                 | rows | Extra       |
+----+-------------+-------+--------+---------------+--------+---------+---------------------+------+-------------+
|  1 | SIMPLE      | b     | index  | party1        | party1 | 8       | NULL                |   10 | Using index |
|  1 | SIMPLE      | a     | eq_ref | party1        | party1 | 8       | const,news.b.party1 |    1 | Using index |
|  1 | SIMPLE      | c     | eq_ref | party1        | party1 | 8       | news.b.party2,const |    1 | Using index |
+----+-------------+-------+--------+---------------+--------+---------+---------------------+------+-------------+

这是我上一篇文章的 BFS 解决方案:

挑战,如何实现六度分离的算法?

但是它的复杂度是多少?假设总共有 n 条记录。

Set up(MySQL):

create table inRelation(
    party1 integer unsigned NOT NULL,
    party2 integer unsigned NOT NULL,
    unique (party1,party2)
);

insert into inRelation(party1,party2) values(1,2),(1,3),(2,3),(1,4),(2,5),(3,5),(1,6),(1,7),(2,7),(5,7);

mysql> select * from inRelation a
    -> join inRelation b on a.party2=b.party1
    -> join inRelation c on b.party2=c.party1
    -> where a.party1=1 and c.party2=7;
+--------+--------+--------+--------+--------+--------+
| party1 | party2 | party1 | party2 | party1 | party2 |
+--------+--------+--------+--------+--------+--------+
|      1 |      2 |      2 |      5 |      5 |      7 |
|      1 |      3 |      3 |      5 |      5 |      7 |
+--------+--------+--------+--------+--------+--------+
2 rows in set (0.00 sec)

mysql> explain select * from inRelation a
    -> join inRelation b on a.party2=b.party1
    -> join inRelation c on b.party2=c.party1
    -> where a.party1=1 and c.party2=7;
+----+-------------+-------+--------+---------------+--------+---------+---------------------+------+-------------+
| id | select_type | table | type   | possible_keys | key    | key_len | ref                 | rows | Extra       |
+----+-------------+-------+--------+---------------+--------+---------+---------------------+------+-------------+
|  1 | SIMPLE      | b     | index  | party1        | party1 | 8       | NULL                |   10 | Using index |
|  1 | SIMPLE      | a     | eq_ref | party1        | party1 | 8       | const,news.b.party1 |    1 | Using index |
|  1 | SIMPLE      | c     | eq_ref | party1        | party1 | 8       | news.b.party2,const |    1 | Using index |
+----+-------------+-------+--------+---------------+--------+---------+---------------------+------+-------------+

This is a BFS solution for my previous post:

Challenge,how to implement an algorithm for six degree of separation?

But what's the complexity of it?Suppose there are totally n records .

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(1

欢你一世 2024-08-25 03:57:35

假设有N个顶点和E条边。对于每个表,每对顶点之间都可以存在连接,并且需要检查所有顶点是否相等。因此最坏情况下的性能将是 O(|V| + |E|)

更新:
如果你正在考虑Mysql,有很多因素会影响复杂性,如果你在字段上有主键索引,就会使用b树索引。如果是普通的非聚集索引,就会使用哈希索引。这些数据结构中的每一个都有不同的成本。

从你的另一个问题,我看到这是你的要求
1.计算UserX到UserY的路径
2. 对于UserX,计算距离不超过3步的所有用户。

对于第一个,最好的办法是应用 djikstra 算法并在 java 中构造一个表,然后在表中更新它。请注意,添加每个新节点都需要完整的处理。

对此的其他解决方案是使用 SQL 1999 标准中引入的递归 SQL 来创建包含从 UserX 到 UserY 的路径的视图。如果您需要一些递归查询的参考,请告诉我。

对于第二个,您编写的查询完美运行。

Assuming there are N vertices and E edges. For every table there can be a join between every pair of vertices and need to check all the vertices for equality. So worst case performance will be O(|V| + |E|)

Updated:
If you are considering Mysql, there are lot of things that affect the complexity, if you have primary key index on the field, b-tree index will be used. If its a normal unclustered index, hash index will be used. There are different costs for each of these data structures.

From your other question, I see this is your requirements
1. Calculate the path from UserX to UserY
2. For UserX,calculate all users that is no more than 3 steps away.

For the first one, best thing is to apply djikstra algorithm and construct a table in java and then update it in the table. Note that, adding every new node, needs complete processing.

Other solution to this will be to use recursive SQL introduced in SQL 1999 standard to create a view containing the path from UserX to UserY. Let me know if you need some references for recursive queries.

For the second one, the query you have written works perfectly.

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文