k&r 与位操作混淆

发布于 2024-08-17 16:20:08 字数 488 浏览 15 评论 0原文

练习是: 编写一个函数 setbits(x,p,n,y),返回 x,并将从位置 p 开始的 n 位设置为 y 最右边的 n 位,其他位保持不变。

我尝试的解决方案是:

#include <stdio.h>

unsigned setbits(unsigned, int, int, unsigned);

int main(void)
{
    printf("%u\n", setbits(256, 4, 2, 255));
    return 0;
}

unsigned setbits(unsigned x, int p, int n, unsigned y)
{
    return (x >> (p + 1 - n)) | (1 << (n & y));
}

这可能是不正确的,但是我走的路正确吗?如果不是,我做错了什么?我不确定为什么我不完全理解这一点,但我花了大约一个小时试图想出这一点。

谢谢。

The exercise is:
Write a function setbits(x,p,n,y) that returns x with the n bits that begin at position p set to the rightmost n bits of y, leaving the other bits unchanged.

My attempt at a solution is:

#include <stdio.h>

unsigned setbits(unsigned, int, int, unsigned);

int main(void)
{
    printf("%u\n", setbits(256, 4, 2, 255));
    return 0;
}

unsigned setbits(unsigned x, int p, int n, unsigned y)
{
    return (x >> (p + 1 - n)) | (1 << (n & y));
}

It's probably incorrect, but am I on the right path here? If not, what am I doing wrong? I'm unsure as to why I don't perfectly understand this, but I spent about an hour trying to come up with this.

Thanks.

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(3

半边脸i 2024-08-24 16:20:08

这是您的算法:

  1. 如果 n 为 0,则返回 x。
  2. 取 1,左移 n 次,然后减 1。将此称为 mask
  3. 左移掩码 p 次称为掩码2。
  4. x 与 mask2 的逆。 y 带掩码,左移 p 次。
  5. 这两个操作的结果,并返回该值。

Here's your algorithm:

  1. If n is 0, return x.
  2. Take 1, and left shift it n times and then subtract 1. Call this mask.
  3. Left shift mask p times call this mask2.
  4. And x with the inverse of mask2. And y with mask, and left shift p times.
  5. Or the results of those two operations, and return that value.
蓝眼泪 2024-08-24 16:20:08

我认为答案是对 2.9 节中的 getbits 示例进行稍微修改的应用程序。

让我们将其分解如下:

Let bitstring x be 1 0 1 1 0 0
Let bitstring y be 1 0 1 1 1 1

positions -------->5 4 3 2 1 0

设置 p = 4 和 n =3 给出 x 的位串,即 0 1 1。它从 4 开始,到 2 结束,跨越 3 个元素。

我们想要做的是将 0 1 1 替换为 1 1 1(位串 y 的最后三个元素)。

让我们暂时忘记左移/右移,将问题形象化如下:

我们需要从位串 y 中获取最后三位数字,即 1 1 1

放置 1 1 1 直接位于位串 x 的位置 4 3 和 2 下方。

0 1 1 替换为 1 1 1,同时保持其余位不变...

现在让我们更详细地了解...

是:

We need to grab the last three digits from bitstring y which is 1 1 1

我的第一句话 从位串中分离位的方法是首先从全 0 的位串开始。
我们最终得到0 0 0 0 0 0

0 具有这种令人难以置信的特性,其中将其与另一个数字按位“&”运算会得到全 0,而将其与另一个数字按位“|”运算则返回另一个数字。

0 本身在这里没有用...但它告诉我们,如果我们 '|' y 的最后三位数字带有“0”,我们最终会得到 1 1 1。 y 中的其他位与我们无关,因此我们需要找到一种方法将这些数字归零,同时保持最后三位数字完好无损。本质上我们需要数字0 0 0 1 1 1

因此,让我们看看所需的一系列转换:

Start with  ->  0 0 0 0 0 0
apply ~0    ->  1 1 1 1 1 1
lshift by 3 ->  1 1 1 0 0 0 
apply ~     ->  0 0 0 1 1 1
& with y    ->  0 0 0 1 1 1 & 1 0 1 1 1 1 -> 0 0 0 1 1 1

这样我们就可以将最后三位数字用于设置目的......

我的第二个陈述是:

将 1 1 1 直接放在位串 x 的位置 4 3 和 2 下方。

可以从第 2.9 节中的 getbits 示例中找到执行此操作的提示。我们对位置 4,3 和 2 的了解可以从值 p = 4 和 n =3 中找到。 p 是位集的位置,n 是位集的长度。结果 p+1-n 为我们提供了位集距最右边位的偏移量。在此特定示例中,p+1-n = 4 +1-3 = 2

所以......如果我们对字符串 0 0 0 1 1 1 左移 2,我们最终会得到 0 1 1 1 0 0。如果将此字符串放在 x 下,您会注意到 1 1 1 与 x 的位置 4 3 和 2 对齐。

我想我终于有所收获了……我最后的发言是……

将 0 1 1 替换为 1 1 1,同时保持其余位不变...

现在让我们回顾一下我们的字符串:

x           ->   1 0 1 1 0 0
isolated y  ->   0 1 1 1 0 0

对这两个值进行按位或运算可以为我们提供本例所需的内容:

1 1 1 1 0 0 

但是如果使用 < 来代替,则会失败code>1 1 1,我们有 1 0 1...所以如果我们需要进一步挖掘才能得到我们的“银弹”...

让我们看看再次高于两个字符串...

x -> bit by bit...1(stays) 0(changes) 1(changes) 1(changes) 0(stays) 0(stays)

所以理想情况下...我们需要位串 1 xxx 0 0,其中 x 将与 1 交换。
这是对我们有帮助的直觉飞跃。

Bitwise complement of isolated y -> 1 0 0 0 1 1
& this with x gives us           -> 1 0 0 0 0 0
| this with isolated y           -> 1 1 1 1 0 0 (TADA!)

希望这篇长文章可以帮助人们合理化和解决此类位掩码问题...

谢谢

I think the answer is a slightly modified application of the getbits example from section 2.9.

Lets break it down as follows:

Let bitstring x be 1 0 1 1 0 0
Let bitstring y be 1 0 1 1 1 1

positions -------->5 4 3 2 1 0

Setting p = 4 and n =3 gives us the bitstring from x which is 0 1 1. It starts at 4 and ends at 2 and spans 3 elements.

What we want to do is to replace 0 1 1 with 1 1 1(the last three elements of bitstring y).

Lets forget about left-shift/right-shift for the moment and visualize the problem as follows:

We need to grab the last three digits from bitstring y which is 1 1 1

Place 1 1 1 directly under positions 4 3 and 2 of bitstring x.

Replace 0 1 1 with 1 1 1 while keeping the rest of the bits intact...

Now lets go into a little more detail...

My first statement was:

We need to grab the last three digits from bitstring y which is 1 1 1

The way to isolate bits from a bitstring is to first start with bitstring that has all 0s.
We end up with 0 0 0 0 0 0.

0s have this incredible property where bitwise '&'ing it with another number gives us all 0s and bitwise '|'ing it with another number gives us back that other number.

0 by itself is of no use here...but it tells us that if we '|' the last three digits of y with a '0', we will end up with 1 1 1. The other bits in y don't really concern us here, so we need to figure out a way to zero out those numbers while keeping the last three digits intact. In essence we need the number 0 0 0 1 1 1.

So lets look at the series of transformations required:

Start with  ->  0 0 0 0 0 0
apply ~0    ->  1 1 1 1 1 1
lshift by 3 ->  1 1 1 0 0 0 
apply ~     ->  0 0 0 1 1 1
& with y    ->  0 0 0 1 1 1 & 1 0 1 1 1 1 -> 0 0 0 1 1 1

And this way we have the last three digits to be used for setting purposes...

My second statement was:

Place 1 1 1 directly under positions 4 3 and 2 of bitstring x.

A hint for doing this can be found from the getbits example in section 2.9. What we know about positions 4,3 and 2, can be found from the values p = 4 and n =3. p is the position and n is the length of the bitset. Turns out p+1-n gives us the offset of the bitset from the rightmost bit. In this particular example p+1-n = 4 +1-3 = 2.

So..if we do a left shift by 2 on the string 0 0 0 1 1 1, we end up with 0 1 1 1 0 0. If you put this string under x, you will notice that 1 1 1 aligns with positions 4 3 and 2 of x.

I think I am finally getting somewhere...the last statement I made was..

Replace 0 1 1 with 1 1 1 while keeping the rest of the bits intact...

Lets review our strings now:

x           ->   1 0 1 1 0 0
isolated y  ->   0 1 1 1 0 0

Doing a bitwise or on these two values gives us what we need for this case:

1 1 1 1 0 0 

But this would fail if instead of 1 1 1, we had 1 0 1...so if we need to dig a little more to get to our "silver-bullet"...

Lets look at the above two strings one more time...

x -> bit by bit...1(stays) 0(changes) 1(changes) 1(changes) 0(stays) 0(stays)

So ideally..we need the bitstring 1 x x x 0 0, where the x's will be swapped with 1's.
Here's a leap of intuition that will help us..

Bitwise complement of isolated y -> 1 0 0 0 1 1
& this with x gives us           -> 1 0 0 0 0 0
| this with isolated y           -> 1 1 1 1 0 0 (TADA!)

Hope this long post helps people with rationalizing and solving such bitmasking problems...

Thanks

巨坚强 2024-08-24 16:20:08

请注意 ~0 << i 为您提供一个数字,其中最低有效 i 位设置为 0,其余位设置为 1。同样,~(~0 << i) 给出的数字的最低有效 i 位设置为 1,其余的到0

现在,要解决您的问题:

  1. 首先,您需要一个数字,该数字将除从位置 p 开始的 n 位之外的所有位设置为 x 的位。为此,您需要一个掩码,该掩码在除从位置 p 开始的 n 位之外的所有位置均由 1 组成:
    1. 此掩码具有最高(最高有效)位集,从位置 p+1 处的位开始。
    2. 此掩码还设置了最低有效 p+1-n 位。
  2. 获得上述掩码后,此掩码的 &x 将为您提供步骤 1 中所需的数字。
  3. 现在,您需要一个具有最低有效值的数字y 组的 n 位左移 p+1-n 位。
    1. 您可以轻松制作一个仅设置最低有效 n 位的掩码,并使用 & 它与 y 来提取 y 的最低有效 n 位。
    2. 然后,您可以将此数字移动 p+1-n 位。
  4. 最后,您可以对步骤 2 和 3.2 的结果进行按位或 (|) 来获取您的数字。

清澈如泥? :-)

(上述方法应该与数字的大小无关,我认为这很重要。)

编辑:看看你的努力:n & y 不会对 n 位执行任何操作。例如,如果 n 为 8,则您需要 y 的最后 8 位,但 n & y 只会选择 y 的第 4 位(二进制中的 8 是 1000)。所以你知道那是不对的。同样,右移 x p+1-n 次会得到一个数字,其最高有效 p+1-n 位设置为零和其余位由 x 的最高有效位组成。这也不是你想要的。

Note that ~0 << i gives you a number with the least significant i bits set to 0, and the rest of the bits set to 1. Similarly, ~(~0 << i) gives you a number with the least significant i bits set to 1, and the rest to 0.

Now, to solve your problem:

  1. First, you want a number that has all the bits except the n bits that begin at position p set to the bits of x. For this, you need a mask that comprises of 1 in all the places except the n bits beginning at position p:
    1. this mask has the topmost (most significant) bits set, starting with the bit at position p+1.
    2. this mask also has the least significant p+1-n bits set.
  2. Once you have the above mask, & of this mask with x will give you the number you wanted in step 1.
  3. Now, you want a number that has the least significant n bits of y set, shifted left p+1-n bits.
    1. You can easily make a mask that has only the least significant n bits set, and & it with y to extract y's least significant n bits.
    2. Then, you can shift this number by p+1-n bits.
  4. Finally, you can bitwise-or (|) the results of step 2 and 3.2 to get your number.

Clear as mud? :-)

(The above method should be independent of the size of the numbers, which I think is important.)

Edit: looking at your effort: n & y doesn't do anything with n bits. For example, if n is 8, you want the last 8 bits of y, but n & y will just pick the 4th bit of y (8 in binary is 1000). So you know that can't be right. Similarly, right-shifting x p+1-n times gives you a number that has the most significant p+1-n bits set to zero and the rest of the bits are made of the most significant bits of x. This isn't what you want either.

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文