计算任意大数的阶乘,显示所有数字

发布于 2024-08-16 11:24:28 字数 143 浏览 5 评论 0原文

最近在一次采访中,我被要求描述一种计算任意大数的阶乘的方法;我们获得答案的所有数字的方法。

我搜索了各个地方并在一些论坛上询问。但我想知道是否有任何方法可以在不使用 GMP 等库的情况下完成此任务。

谢谢。

I was recently asked, in an interview, to describe a method to calculate the factorial of any arbitrarily large number; a method in which we obtain all the digits of the answer.

I searched various places and asked in a few forums. But I would like to know if there is any way to accomplish this without using libraries like GMP.

Thank you.

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(11

倒数 2024-08-23 11:24:28

GNU 多精度库是一个很好的库!但既然你说不允许使用外部库,我相信它可能的唯一方法就是采用一个 int 数组,然后将数字相乘,就像用笔在纸上做的那样!

这是我不久前写的代码..

#include<iostream>
#include<cstring>

int max = 5000;

void display(int arr[]){
    int ctr = 0;
    for (int i=0; i<max; i++){
        if (!ctr && arr[i])         ctr = 1;
        if(ctr)
            std::cout<<arr[i];
    }
}


void factorial(int arr[], int n){
    if (!n) return;
    int carry = 0;
    for (int i=max-1; i>=0; --i){
        arr[i] = (arr[i] * n) + carry;
        carry = arr[i]/10;
        arr[i] %= 10;
    }
    factorial(arr,n-1);
}

int main(){
    int *arr = new int[max];
    std::memset(arr,0,max*sizeof(int));
    arr[max-1] = 1;
    int num;
    std::cout<<"Enter the number: ";
    std::cin>>num;
    std::cout<<"factorial of "<<num<<"is :\n";
    factorial(arr,num);
    display(arr);
    delete[] arr;
    return 0;
}

“arr”只是一个整数数组,而阶乘是一个简单的函数,它将给定的数字乘以“大数”。

希望这能解决您的疑问..

GNU Multiprecision library is a good one! But since you say using of external libraries are not allowed, only way I believe its possible is by taking an array of int and then multiplying numbers as you do with pen on paper!

Here is the code I wrote some time back..

#include<iostream>
#include<cstring>

int max = 5000;

void display(int arr[]){
    int ctr = 0;
    for (int i=0; i<max; i++){
        if (!ctr && arr[i])         ctr = 1;
        if(ctr)
            std::cout<<arr[i];
    }
}


void factorial(int arr[], int n){
    if (!n) return;
    int carry = 0;
    for (int i=max-1; i>=0; --i){
        arr[i] = (arr[i] * n) + carry;
        carry = arr[i]/10;
        arr[i] %= 10;
    }
    factorial(arr,n-1);
}

int main(){
    int *arr = new int[max];
    std::memset(arr,0,max*sizeof(int));
    arr[max-1] = 1;
    int num;
    std::cout<<"Enter the number: ";
    std::cin>>num;
    std::cout<<"factorial of "<<num<<"is :\n";
    factorial(arr,num);
    display(arr);
    delete[] arr;
    return 0;
}

'arr' is just an integer array, and factorial is a simple function that multiplies the given number to the 'large number'.

Hope this solves your query..

筱武穆 2024-08-23 11:24:28

接受的答案很好,但这是 C++;我们可以做得更好。让我们从我们自己的 Bignum 类开始,它具有完全无限的位数。

为了获得最高效率,我们将使用纯二进制数,将每个数组元素包装为我们可以有效处理的尽可能多的位。更简单的方法是在每个元素中存储一个十进制数字。在这里,我采取了折衷方案,在每个 uint32_t 元素中存储 9 位十进制数字。

数据以小端存储,因为当我们需要更高阶的元素时,在末尾扩展向量要容易得多。

一旦我们有了这个类,阶乘函数本身就很简单了。

#include <assert.h>
#include <iomanip>
#include <iostream>
#include <stdint.h>
#include <vector>

class Bignum
{
public:
    Bignum(int value)
    {
        assert(value >= 0 && value <= 999999999);
        parts.push_back(value);
    }

    Bignum& operator*=(int rhs)
    {
        assert(rhs >= 0 && rhs <= 999999999);
        uint32_t carry = 0;
        for (size_t i = 0; i < parts.size(); i++)
        {
            uint64_t product = (uint64_t)parts[i] * (uint64_t)rhs + carry;
            parts[i] = (uint32_t)(product % 1000000000LL);
            carry = (uint32_t)(product / 1000000000LL);
        }
        if (carry != 0)
            parts.push_back(carry);
        return *this;
    }

    friend std::ostream & operator<<(std::ostream& stream, const Bignum& num);

private:
    std::vector<uint32_t> parts;
};

inline std::ostream& operator<<(std::ostream& stream, const Bignum& num)
{
    char oldfill = stream.fill('0');
    for (std::vector<uint32_t>::const_reverse_iterator it = num.parts.rbegin(); it != num.parts.rend(); it++)
        stream << *it << std::setw(9);
    stream.fill(oldfill);
    stream.width(0);
    return stream;
}

Bignum factorial(int n)
{
    Bignum fac = 1;
    for (int i = 2; i <= n; i++)
        fac *= i;
    return fac;
}

int main(int argc, char* argv[])
{
    for (int n = 0; n <= 52; n++)
        std::cout << factorial(n) << std::endl;
    return 0;
}

The accepted answer is fine, but this is C++; we can do better. Let's make the start of our own Bignum class, with a totally unbounded number of digits.

For the highest efficiency we would work with pure binary numbers, packing each array element with as many bits as we can efficiently handle. The simpler approach is to store a single decimal digit in each element. Here I've gone for a compromise, storing 9 decimal digits in each uint32_t element.

The data is stored little-endian, since it's much easier to extend a vector at the end when we need higher order elements.

Once we have this class, the factorial function is simplicity itself.

#include <assert.h>
#include <iomanip>
#include <iostream>
#include <stdint.h>
#include <vector>

class Bignum
{
public:
    Bignum(int value)
    {
        assert(value >= 0 && value <= 999999999);
        parts.push_back(value);
    }

    Bignum& operator*=(int rhs)
    {
        assert(rhs >= 0 && rhs <= 999999999);
        uint32_t carry = 0;
        for (size_t i = 0; i < parts.size(); i++)
        {
            uint64_t product = (uint64_t)parts[i] * (uint64_t)rhs + carry;
            parts[i] = (uint32_t)(product % 1000000000LL);
            carry = (uint32_t)(product / 1000000000LL);
        }
        if (carry != 0)
            parts.push_back(carry);
        return *this;
    }

    friend std::ostream & operator<<(std::ostream& stream, const Bignum& num);

private:
    std::vector<uint32_t> parts;
};

inline std::ostream& operator<<(std::ostream& stream, const Bignum& num)
{
    char oldfill = stream.fill('0');
    for (std::vector<uint32_t>::const_reverse_iterator it = num.parts.rbegin(); it != num.parts.rend(); it++)
        stream << *it << std::setw(9);
    stream.fill(oldfill);
    stream.width(0);
    return stream;
}

Bignum factorial(int n)
{
    Bignum fac = 1;
    for (int i = 2; i <= n; i++)
        fac *= i;
    return fac;
}

int main(int argc, char* argv[])
{
    for (int n = 0; n <= 52; n++)
        std::cout << factorial(n) << std::endl;
    return 0;
}
笑咖 2024-08-23 11:24:28

Srivatsan Iyer 提出了一个很好的解决方案,我的建议是:

  1. 通过使用 unsigned char 数组而不是使用 int 数组来存储数字,仍然可以提高内存效率。
    与 int 数组相比,它只需要 25% 的内存需求。

  2. 为了获得最佳的内存优化,我们也可以使用单个字节来表示 2 位数字。
    因为只要 4 位就足以表示从 0 到 9 的任何数字。
    因此,我们可以使用按位运算将两个数字打包在一个字节中。
    与int数组相比,它会占用12.5%的内存。

Nice solution by Srivatsan Iyer and my suggestion are :

  1. It can still be made more memory efficient by using unsigned char array rather than using int array to store digits.
    It will take only 25% of the memory need to that of int array.

  2. For the best memory optimization , we can also use single byte to represent a 2 digits.
    Since only 4 bits are suffice to represent any digit from 0 to 9.
    So we can pack two digits in a single byte using bitwise operations.
    It will take 12.5% of the memory need to that of int array.

浪漫人生路 2024-08-23 11:24:28

BigInteger 类可以解决您的问题,上面的 C 实现可以让您了解如何实现 BigInt,只不过代码针对速度进行了优化,并且只针对计算阶乘进行了定制。

A BigInteger class would solve your problem, and the C implementation above gives you an idea about how a BigInt would be implemented, except that the code is optimized for speed and tailored to computing the factorial only.

叫嚣ゝ 2024-08-23 11:24:28

好吧,您必须使用数组编写自己的数学例程。加法很容易,乘法有点困难,但仍然是可能的。

编辑:想发布一个示例,但 Srivatsan Iyer 的示例就很好。

Well, you'd have to write your own math routines using arrays. That's very easy for addition, multiplication is a bit harder, but still possible.

EDIT: Wanted to post an example, but Srivatsan Iyer's example is just fine.

鹤舞 2024-08-23 11:24:28

我有一个计算阶乘的解决方案,它至少适用于 n<=15000。 10000的阶乘可以在1秒内计算出来,计算阶乘只需不到2秒。 (当然,您的问题没有说明时间限制,这些时间完全取决于机器)。无论如何,这个概念非常简单。我使用字符数组。数组的第一个字符是“1”。 LSB 从从 0 开始的索引存储。变量(根据我的程序是 m)跟踪阶乘长度。 m 的最终值是阶乘中的位数,char 数组的第 (m-1) 个元素是阶乘的 MSB。
当循环迭代时,字符将添加到数组的右侧。变量“c”跟踪进位。

使用数组的缺点是留下大量未使用的字节。超过某个点,您就无法为数组保留空间。此外,数组往往会变慢。

你可以在ideone上查看我的程序: http://ideone.com/K410n7

我相信我的解决方案仍然可以优化。请建议如何。

include<stdio.h> 

char res[200000];

inline int fact(int n)
{

    int i,j;

    register int m,c;

    m=1;

    res[0]='1';

    for(i=2;i<=n;i++)
    {

        c=0;

        for(j=0; j< m; j++){

            c =((res[j]-48)*i)+c;

            res[j]=(c%10)+48;

            c=c/10;

        }
        while(c>0){
            res[m]=(c%10)+48;

            c=c/10;

            m++;

        }

    }

    return m;

}

int main() {


    int n,i,d;

    scanf("%d",&n);


    d=fact(n);

    for(i=d-1;i>=0;i--)

        printf("%c",res[i]);


    return 0;
}

I have a solution for calculating the factorial, which works fine for at least n<=15000. Factorial of 10000 can be calculated under 1 sec and that for calculating the factorial takes less than 2 seconds. (Of course your question tells nothing about time constraints and these timings are totally dependent on the machine). Anyways, the concept is quite simple. I use a char array. The first character of the array is '1'. The LSBs are stored from the index starting with 0. A variable(m according to my program) keeps track of the factorial length. The final value of m is the number of digits in the factorial and the (m-1)th element of the char array is MSB of the factorial.
As the loop iterates, the characters get added in the right side of the array. A variable 'c' keeps track of the carry.

The drawbacks of using the array is left over chunks of unused bytes. And beyond a certain point, you cannot reserve space for an array.Besides, arrays tend to get slow.

You can check out my program on ideone: http://ideone.com/K410n7

I believe my solution can still be optimized. Please suggest how.

include<stdio.h> 

char res[200000];

inline int fact(int n)
{

    int i,j;

    register int m,c;

    m=1;

    res[0]='1';

    for(i=2;i<=n;i++)
    {

        c=0;

        for(j=0; j< m; j++){

            c =((res[j]-48)*i)+c;

            res[j]=(c%10)+48;

            c=c/10;

        }
        while(c>0){
            res[m]=(c%10)+48;

            c=c/10;

            m++;

        }

    }

    return m;

}

int main() {


    int n,i,d;

    scanf("%d",&n);


    d=fact(n);

    for(i=d-1;i>=0;i--)

        printf("%c",res[i]);


    return 0;
}
落墨 2024-08-23 11:24:28
#include <iostream>
using namespace std;
int main ()
{
    int i,n,p=1;
    cout<<"Enter a number: ";
    cin>>n;
    cout<<endl;

    for (i=1;i<=n; i++)
    {
        cout<<i<<" X "; 
        p=p*i;
    }
    cout<<endl<<endl<<p<<" factorial of "<<n;

    return 0;
}
#include <iostream>
using namespace std;
int main ()
{
    int i,n,p=1;
    cout<<"Enter a number: ";
    cin>>n;
    cout<<endl;

    for (i=1;i<=n; i++)
    {
        cout<<i<<" X "; 
        p=p*i;
    }
    cout<<endl<<endl<<p<<" factorial of "<<n;

    return 0;
}
野の 2024-08-23 11:24:28

这实际上很容易。这里有两种方法。一种是精确的,一种是近似的。对于精确的数字,任何超过 10,000 的数字都将需要数秒的时间来计算。近似它需要几微秒,直到达到数百万秒。如果有人感兴趣的话,这是斯特林的近似。

10,000,000 的阶乘约为 1.2024234127436e+65657059 这需要 5.9 秒 找到确切的金额需要 34 天。

<?php
$test= 3579;

echo 'Factorial of '.$test.'<br><br>';

$tm= microtime( true);

echo 'Exact '.( $f= factorialexact( $test)).' e+'.(strlen( $f)-1).' missing decimal place after first digit<br>';

echo ( microtime( true) - $tm). ' seconds<br><br>';

$tm= microtime( true);

echo 'Aprox '.factorialapprox( $test).'<br>';

echo ( microtime( true) - $tm). ' seconds<br><br>';


function factorialexact( $n){
    $f= '1';
    for ( $i=$n; $i>1; $i--){
        $f= JL_bcmul( $f, (''.$i));
    }
    return $f;
}

function factorialapprox( $n){
    // Stirling's factorial approximation
    // aprox factorial n = sqrt( 2 * pi * n) * n^n / e^n
    // store in t the easy part, calc the first term easily
    $t= sqrt( 2 * 3.14159265358979 * $n);
    // things get tough from here because for large n
    // n^n can blow away floating point pachages 
    // declare exponent of the number
    $e= 0;
    // the remaining terms are n^n / e^n
    // both n and e (natural log) are raised to the same power
    // that is n, just negative of each other
    for ( $i=0; $i<$n; $i++){
        // loop to 
        // mulitply by n and divide by e for each iteration
        $t= $t * $n / 2.71828182845904;
        // exponents are going to get away from us 
        // so reduce or increase t
        while ( $t>1000){
            $t= $t/1000;
            $e= $e+3;
        } 
        while ( $t<0.001){
            $t= $t*1000;
            $e= $e-3;
        } 
    }
    // garentee the base number is between 1 and 10
    while ( $t>=10){
        $t= $t/10;
        $e= $e+1;
    } 
    while ( $t<1){
        $t= $t*10;
        $e= $e-1;
    } 
    // return at a floating string.
    // do not use parseFloat() or floatval() 
    // $v= explode( 'e', $result); $floatvalue= $v[0] * pow( 10, $v[1]);  
    // won't work either.  $v[1] is way too large
    // the exponent can easily be in the tens of thousands
    $p= '-';
    if ( $e>=0){ $p= '+'; }
    return $t.'e'.$p.$e;
}    

function JL_bcmul( $a, $b){
    if ( function_exists( 'bcmul')){
        return bcmul( ( ''.$a), (''.$b));
    }
    $s= array();
    for ($i=0; $i < count( $a) + count( $b); $i++){ $s[$i]= '0'; }
    $t= 0;
    for ($i=0; $i < strlen( $b); $i++){ 
        for ($j=0; $j < strlen( $a); $j++){
            $t= $s[$i+$j] + intval( $a[strlen( $a) - $j - 1]) * intval( $b[ strlen( $b) - $i - 1]); 
            $s[$i+$j]= $t % 10;
            $s[$i+$j+1]= $s[$i+$j+1] + floor( $t / 10);
        }
    }
    $s= array_reverse( $s);
    return trim( trim(( implode( '', $s).'_'), '0'), '_');
}

That's actually pretty easy. Here are two ways. One is exact and one is an approximation. For exact figures, any number over 10,000 is going to take multiple seconds to calculate. Approximating it will take microseconds, until you get into the millions. It is Stirling's approximation if anyone is interested.

Factorial of 10,000,000 is aprox 1.2024234127436e+65657059 This took 5.9 seconds Finding the exact amount would take 34 days.

<?php
$test= 3579;

echo 'Factorial of '.$test.'<br><br>';

$tm= microtime( true);

echo 'Exact '.( $f= factorialexact( $test)).' e+'.(strlen( $f)-1).' missing decimal place after first digit<br>';

echo ( microtime( true) - $tm). ' seconds<br><br>';

$tm= microtime( true);

echo 'Aprox '.factorialapprox( $test).'<br>';

echo ( microtime( true) - $tm). ' seconds<br><br>';


function factorialexact( $n){
    $f= '1';
    for ( $i=$n; $i>1; $i--){
        $f= JL_bcmul( $f, (''.$i));
    }
    return $f;
}

function factorialapprox( $n){
    // Stirling's factorial approximation
    // aprox factorial n = sqrt( 2 * pi * n) * n^n / e^n
    // store in t the easy part, calc the first term easily
    $t= sqrt( 2 * 3.14159265358979 * $n);
    // things get tough from here because for large n
    // n^n can blow away floating point pachages 
    // declare exponent of the number
    $e= 0;
    // the remaining terms are n^n / e^n
    // both n and e (natural log) are raised to the same power
    // that is n, just negative of each other
    for ( $i=0; $i<$n; $i++){
        // loop to 
        // mulitply by n and divide by e for each iteration
        $t= $t * $n / 2.71828182845904;
        // exponents are going to get away from us 
        // so reduce or increase t
        while ( $t>1000){
            $t= $t/1000;
            $e= $e+3;
        } 
        while ( $t<0.001){
            $t= $t*1000;
            $e= $e-3;
        } 
    }
    // garentee the base number is between 1 and 10
    while ( $t>=10){
        $t= $t/10;
        $e= $e+1;
    } 
    while ( $t<1){
        $t= $t*10;
        $e= $e-1;
    } 
    // return at a floating string.
    // do not use parseFloat() or floatval() 
    // $v= explode( 'e', $result); $floatvalue= $v[0] * pow( 10, $v[1]);  
    // won't work either.  $v[1] is way too large
    // the exponent can easily be in the tens of thousands
    $p= '-';
    if ( $e>=0){ $p= '+'; }
    return $t.'e'.$p.$e;
}    

function JL_bcmul( $a, $b){
    if ( function_exists( 'bcmul')){
        return bcmul( ( ''.$a), (''.$b));
    }
    $s= array();
    for ($i=0; $i < count( $a) + count( $b); $i++){ $s[$i]= '0'; }
    $t= 0;
    for ($i=0; $i < strlen( $b); $i++){ 
        for ($j=0; $j < strlen( $a); $j++){
            $t= $s[$i+$j] + intval( $a[strlen( $a) - $j - 1]) * intval( $b[ strlen( $b) - $i - 1]); 
            $s[$i+$j]= $t % 10;
            $s[$i+$j+1]= $s[$i+$j+1] + floor( $t / 10);
        }
    }
    $s= array_reverse( $s);
    return trim( trim(( implode( '', $s).'_'), '0'), '_');
}
同展鸳鸯锦 2024-08-23 11:24:28
#include<stdio.h>
#include<string.h>
char f[10000];
char factorial[1010][10000];
void multiply(int k){
    int ci,sum,i;
    int len = strlen(f);
    ci=0;
    i=0;
    while(i<len){
        sum=ci+(f[i] - '0') * k;
        f[i] = (sum % 10) + '0';
        i++;
        ci = sum/10;
    }
    while(ci>0){
        f[i++] = (ci%10) + '0';
        ci/=10;
    }
    f[i]='\0';
    for(int j=0;j<i;j++)factorial[k][j]=f[j];
    factorial[k][i]='\0';
}
void fac(){
    int k;
    strcpy(f,"1");
    for(k=2;k<=1000;k++)multiply(k);
}
void print(int n){
    int i;
    int len = strlen(factorial[n]);
    printf("%d!\n",n);
    for(i=len-1;i>=0;i--){
        printf("%c",factorial[n][i]);
    }
    printf("\n");
}
int main()
{
    int n;
    factorial[0][0]='1';
    factorial[1][0]='1';
    fac();
    while(scanf("%d",&n)==1){
        print(n);
    }
    return 0;
}
#include<stdio.h>
#include<string.h>
char f[10000];
char factorial[1010][10000];
void multiply(int k){
    int ci,sum,i;
    int len = strlen(f);
    ci=0;
    i=0;
    while(i<len){
        sum=ci+(f[i] - '0') * k;
        f[i] = (sum % 10) + '0';
        i++;
        ci = sum/10;
    }
    while(ci>0){
        f[i++] = (ci%10) + '0';
        ci/=10;
    }
    f[i]='\0';
    for(int j=0;j<i;j++)factorial[k][j]=f[j];
    factorial[k][i]='\0';
}
void fac(){
    int k;
    strcpy(f,"1");
    for(k=2;k<=1000;k++)multiply(k);
}
void print(int n){
    int i;
    int len = strlen(factorial[n]);
    printf("%d!\n",n);
    for(i=len-1;i>=0;i--){
        printf("%c",factorial[n][i]);
    }
    printf("\n");
}
int main()
{
    int n;
    factorial[0][0]='1';
    factorial[1][0]='1';
    fac();
    while(scanf("%d",&n)==1){
        print(n);
    }
    return 0;
}
没︽人懂的悲伤 2024-08-23 11:24:28

代码如下所示:

#include<bits/stdc++.h>
using namespace std;
#define MAX 5000

void factorial(int n)
{
    int carry , res_size = 1, res[MAX];
    res[0] = 1;

    for(int x=2; x<=n; x++)
    {
        carry = 0;
        for(int i=0; i<res_size; i++)
        {
          int prod = res[i]*x + carry;
          res[i] = prod % 10;
          carry  = prod/10;
        }
        while (carry)
        {
          res[res_size++] = carry%10;
          carry = carry/10;
        }
     }
     for(int i=res_size-1; i >= 0; i--) 
     {
         cout<<res[i];
     }
}
int main()
{
      int n;
      cin>>n;
      factorial(n);
      cout<<endl;
      return 0;
}

Code shown below :

#include<bits/stdc++.h>
using namespace std;
#define MAX 5000

void factorial(int n)
{
    int carry , res_size = 1, res[MAX];
    res[0] = 1;

    for(int x=2; x<=n; x++)
    {
        carry = 0;
        for(int i=0; i<res_size; i++)
        {
          int prod = res[i]*x + carry;
          res[i] = prod % 10;
          carry  = prod/10;
        }
        while (carry)
        {
          res[res_size++] = carry%10;
          carry = carry/10;
        }
     }
     for(int i=res_size-1; i >= 0; i--) 
     {
         cout<<res[i];
     }
}
int main()
{
      int n;
      cin>>n;
      factorial(n);
      cout<<endl;
      return 0;
}
初与友歌 2024-08-23 11:24:28

既然每个人都投票给斯里瓦特桑,我只是对这个问题有疑问。您需要存储所有数字吗?如果是,那么 Srivatsan 的解决方案就很好。如果不是,为什么在计算阶乘时不只显示数字呢?我没有正确格式化输出,但这可以达到目的。

int factorial(int num)
{
   if (num <= 0)
      return 1;
   else
   {
      std::cout << num << std::endl;
      return num * factorial(num - 1);
   }
}

更新
对于所有投反对票的人,尽管这是一篇 5 年前的帖子,以及 factorial(3); 的输出,

3
2
1
6 // this is the result of the factorial and the digits above are the ones all the digits in the calculation.

我认为这就是所要求的。

Since everyone voted for Srivatsan, I just have a doubt related to the problem. Do you need to store all the digits? If yes, then Srivatsan's solution is fine. If not, why not just display the numbers, as you calculate the factorial? I am not formatting the output properly, but this could serve the purpose.

int factorial(int num)
{
   if (num <= 0)
      return 1;
   else
   {
      std::cout << num << std::endl;
      return num * factorial(num - 1);
   }
}

UPDATE
For all the downvoters, though this 5 year old post, and the output for factorial(3);

3
2
1
6 // this is the result of the factorial and the digits above are the ones all the digits in the calculation.

I thought this is what asked.

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文