Java逆矩阵计算
我正在尝试用 Java 计算逆矩阵。
我遵循伴随方法(首先计算伴随矩阵,然后转置该矩阵,最后将其乘以行列式值的倒数)。
当矩阵不太大时它起作用。我已经检查过,对于尺寸最大为 12x12 的矩阵,可以快速提供结果。然而,当矩阵大于 12x12 时,完成计算所需的时间呈指数增长。
我需要反转的矩阵是19x19,需要太多时间。耗时较多的方法就是用于计算行列式的方法。
我使用的代码是:
public static double determinant(double[][] input) {
int rows = nRows(input); //number of rows in the matrix
int columns = nColumns(input); //number of columns in the matrix
double determinant = 0;
if ((rows== 1) && (columns == 1)) return input[0][0];
int sign = 1;
for (int column = 0; column < columns; column++) {
double[][] submatrix = getSubmatrix(input, rows, columns,column);
determinant = determinant + sign*input[0][column]*determinant(submatrix);
sign*=-1;
}
return determinant;
}
有人知道如何更有效地计算大矩阵的行列式吗?如果没有,有谁知道如何使用其他算法计算大矩阵的逆?
谢谢
I'm trying to calculate the inverse matrix in Java.
I'm following the adjoint method (first calculation of the adjoint matrix, then transpose this matrix and finally, multiply it for the inverse of the value of the determinant).
It works when the matrix is not too big. I've checked that for matrixes up to a size of 12x12 the result is quickly provided. However, when the matrix is bigger than 12x12 the time it needs to complete the calculation increases exponentially.
The matrix I need to invert is 19x19, and it takes too much time. The method that more time consumes is the method used for the calculation of the determinant.
The code I'm using is:
public static double determinant(double[][] input) {
int rows = nRows(input); //number of rows in the matrix
int columns = nColumns(input); //number of columns in the matrix
double determinant = 0;
if ((rows== 1) && (columns == 1)) return input[0][0];
int sign = 1;
for (int column = 0; column < columns; column++) {
double[][] submatrix = getSubmatrix(input, rows, columns,column);
determinant = determinant + sign*input[0][column]*determinant(submatrix);
sign*=-1;
}
return determinant;
}
Does anybody know how to calculate the determinant of a large matrix more efficiently? If not, does anyone knows how to calcultate the inverse of a large matrix using other algorithm?
Thanks
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(11)
指数级?不,我相信矩阵求逆是 O(N^3)。
我建议使用 LU 分解 来求解矩阵方程。使用时不必求解行列式。
更好的是,查看一个可以帮助您的软件包。我想到了JAMA。
12x12 或 19x19 不是大矩阵。解决具有数万或数十万个自由度的问题是很常见的。
以下是如何使用 JAMA 的工作示例。编译和运行时,您必须在 CLASSPATH 中包含 JAMA JAR:
根据 quant_dev 的建议,使用 Apache Commons Math 解决了相同的问题:
根据您的情况调整这些内容。
Exponentially? No, I believe matrix inversion is O(N^3).
I would recommend using LU decomposition to solve a matrix equation. You don't have to solve for the determinant when you use it.
Better yet, look into a package to help you. JAMA comes to mind.
12x12 or 19x19 are not large matricies. It's common to solve problems with tens or hundreds of thousands of degrees of freedom.
Here's a working example of how to use JAMA. You have to have the JAMA JAR in your CLASSPATH when you compile and run:
Here's the same problem solved using Apache Commons Math, per quant_dev's recommendation:
Adapt these to your situation.
我建议为此使用 Apache Commons Math 2.0。 JAMA 是一个死项目。 ACM 2.0 实际上借鉴了 JAMA 的线性代数并进一步发展。
I would recommend using Apache Commons Math 2.0 for this. JAMA is a dead project. ACM 2.0 actually took linear algebra from JAMA and developed it further.
la4j(Java 线性代数)库支持矩阵求逆。这是一个简短的例子:
The la4j (Linear Algebra for Java) library supports matrix inversion. Here is the brief example:
对于那些寻求矩阵求逆(不快)的人,请参阅 https://github。 com/rchen8/Algorithms/blob/master/Matrix.java。
For those who seeks matrix inversion (not fast), see https://github.com/rchen8/Algorithms/blob/master/Matrix.java.
矩阵求逆的计算量非常大。正如 duffymo 回答的那样,LU 是一个很好的算法,并且还有其他变体(例如 QR)。
不幸的是,你无法摆脱繁重的计算......如果你没有使用优化的库,瓶颈可能是 getSubmatrix 方法。
此外,如果在计算中考虑特殊矩阵结构(带矩阵、对称性、对角性、稀疏性),也会对性能产生很大影响。您的里程可能会有所不同...
Matrix inversion is computationally very intensive. As duffymo answered LU is a good algorithm, and there are other variants (QR, for instance).
Unfortunately you can't get rid of the heavy calculations... and maybe the bottelneck is the getSubmatrix method if you are not using an optimized library.
Also, special matrix structures (band-matricity, symmetry, diagonality, sparsity) have a great impact in performance if considered in the calculations. Your mileage may vary...
你永远不想用这种方式计算逆矩阵。好的,要避免计算逆本身,因为使用诸如 LU 之类的因式分解几乎总是更好。
使用递归计算来计算行列式在数值上是一件令人厌恶的事情。事实证明,更好的选择是使用 LU 分解来计算行列式。但是,如果您要费心计算 LU 因子,那么为什么要计算逆函数呢?您已经通过计算 LU 因子完成了这项艰巨的工作。
一旦有了 LU 因子,您就可以使用它们进行前后替换。
就 19x19 矩阵而言,它距离我想象的大还差得很远。
You NEVER want to compute an inverse matrix this way. Ok, computation of the inverse itself is to be avoided, as it is almost always better to use a factorization such as an LU.
Computation of the determinant using recursive computations is a numerically obscene thing to do. It turns out that a better choice is to use an LU factorization to compute a determinant. But, if you are going to bother to compute LU factors, then why would you possibly want to compute the inverse? You have already done the difficult work by computing the LU factors.
Once you have LU factors, you can use them to do back and forward substitution.
As far as a 19x19 matrix being big, it is not even close to what I'd think of as big.
由于 ACM 库多年来一直在更新,这里是符合矩阵求逆最新定义的实现。
Since ACM library has updated over the years, here is the implementation conforming to latest definition for matrix inversion.
您计算行列式的算法确实是指数级的。基本问题是您是根据定义进行计算,而直接定义会导致需要计算的子行列式数量呈指数级增长。在计算矩阵的行列式或逆矩阵之前,您确实需要先对矩阵进行变换。 (我想过解释一下动态规划,但是这个问题不能用动态规划来解决,因为子问题的数量也是指数级的。)
正如其他人推荐的那样,LU分解是一个不错的选择。如果您是矩阵计算的新手,您可能还想查看高斯消去法来计算行列式和逆矩阵,因为一开始这可能更容易理解。
在矩阵求逆中要记住的一件事是数值稳定性,因为您正在处理浮点数。所有好的算法都包括行和/或列的排列以选择合适的主元,正如它们所说的那样。至少在高斯消除中,您希望在每一步中对列进行排列,以便选择绝对值最大的元素作为主元,因为这是最稳定的选择。
Your algorithm to compute a determinant is indeed exponential. The basic problem is that you are computing from the definition, and the straight definition leads to an exponential amount of subdeterminants to compute. You really need to transform the matrix first before computing either its determinant or its inverse. (I thought of explaining about dynamic programming, but this problem cannot be solved by dynamic programming as the number of subproblems is exponential too.)
LU decomposition, as recommended by others, is a good choice. If you are new to matrix calculation, you might also want to look at Gaussian elimination to compute determinants and inverses, as that might be a bit easier to comprehend at first.
And one thing to remember in matrix inversion is numerical stability, since you are dealing with floating point numbers. All the good algorithm include permutations of rows and/or columns to choose the suitable pivots, as they are called. At least in Gaussian elimination, you want to, at each step, to permute the columns so that the element largest in absolute value is chosen as the pivot, as this is the stablest choice.
在 Matlab 的游戏中很难击败它。他们也对精度持谨慎态度。如果您有 2.0 和 2.00001 作为主元 - 请注意!你的答案可能会变得非常不精确。另外,查看 Python 的实现(它在 numpy / scipy 的某个地方......)
It is tough to beat Matlab at their game. They also are cautiou about precision. If you have 2.0 and 2.00001 as pivots - watch out! Your answer might end up being very imprecise. Also, check out Python's implementation (it is in numpy / scipy somewhere ...)
你必须有一个精确的解决方案吗?近似求解器(Gauss-Seidel 性能非常好且易于实现)可能会为你工作,并且会很快收敛。 19x19 是一个相当小的矩阵。我认为我使用的 Gauss-Seidel 代码可以在眨眼间解决 128x128 矩阵(但不要引用我的话,已经有一段时间了)。
Do you have to have an exact solution? An approximate solver (Gauss-Seidel is very performant and easy to implement) will likely work for you, and will converge very quickly. 19x19 is quite a small matrix. I think the Gauss-Seidel code that I used could solve a 128x128 matrix in the blink of an eye (but don't quote me on that, it's been a while).
通过 ACM,您可以在没有 rhs 的情况下执行此操作:
By ACM you can do this without rhs: