最短路径算法的修改(从节点到自身的路由)

发布于 2024-08-16 03:29:46 字数 1574 浏览 5 评论 0原文

我正在应用全对最短路径算法(Floyd-Warshall )到这个有向图: 替代文本

该图由其邻接矩阵表示。简单的代码如下所示:

public class ShortestPath {

public static void main(String[] args) {
    int x = Integer.MAX_VALUE;
    int [][] adj= {      
      {0, 6, x, 6, 7}, 
            {x, 0, 5, x, x}, 
            {x, x, 0, 9, 3}, 
            {x, x, 9, 0, 7}, 
            {x, 4, x, x, 0}};

    int [][] D = adj;

    for (int k=0; k<5; k++){
        for (int i=0; i<5; i++){
            for (int j=0; j<5; j++){
                if(D[i][k] != x && D[k][j] != x && D[i][k]+D[k][j] < D[i][j]){
                       D[i][j] = D[i][k]+D[k][j];                    
                   }
            }
        }       
    }

    //Print out the paths
    for (int r=0; r<5; r++) {
         for (int c=0; c<5; c++) {
             if(D[r][c] == x){
                 System.out.print("n/a"); 
             }else{
             System.out.print(" " + D[r][c]);
             }
         }
         System.out.println(" ");
     }
}

}

就算法而言,上面的代码工作得很好。

我试图表明从任何节点到自身的路径不一定一定是0,正如这里使用邻接矩阵所暗示的那样,但可以是任何可能的路径其他节点:例如 B -...-...-...-B

有没有办法修改我当前的表示以指示从 B< /code> 到 B,不是零,而是 12,遵循 BCEB 路线?可以通过某种方式修改邻接矩阵方法来完成吗?

I am applying the all-pairs shortest path algorithm (Floyd-Warshall) to this directed graph:
alt text

The graph is represented by its adjacency matrix. The simple code looks like this:

public class ShortestPath {

public static void main(String[] args) {
    int x = Integer.MAX_VALUE;
    int [][] adj= {      
      {0, 6, x, 6, 7}, 
            {x, 0, 5, x, x}, 
            {x, x, 0, 9, 3}, 
            {x, x, 9, 0, 7}, 
            {x, 4, x, x, 0}};

    int [][] D = adj;

    for (int k=0; k<5; k++){
        for (int i=0; i<5; i++){
            for (int j=0; j<5; j++){
                if(D[i][k] != x && D[k][j] != x && D[i][k]+D[k][j] < D[i][j]){
                       D[i][j] = D[i][k]+D[k][j];                    
                   }
            }
        }       
    }

    //Print out the paths
    for (int r=0; r<5; r++) {
         for (int c=0; c<5; c++) {
             if(D[r][c] == x){
                 System.out.print("n/a"); 
             }else{
             System.out.print(" " + D[r][c]);
             }
         }
         System.out.println(" ");
     }
}

}

The above works fine as far as the algorithm is concerned.

I am trying to indicate that a path from any node to itself is not necessarily 0, as implied by the use of the adjacency matrix here, but can be any possible path through other nodes: For example B -...-...-...-B

Is there a way to modify my current representation to indicate that a shortest path from say, B to B, is not zero, but 12, following the B-C-E-B route? Can it be done by somehow modifying the adjacency matrix method?

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(1

柏拉图鍀咏恒 2024-08-23 03:29:46

将对角元素邻接矩阵从 0 更改为无穷大(理论上)应该可行。

这意味着自循环成本是无限的,任何其他小于该成本的路径都更好,因此如果存在从节点到自身的路径,通过其他节点,其成本将是有限的,它将取代无限值。

实际上,您可以使用整数的最大值作为无限。

Changing the diagonal elements adjacency matrix from 0 to infinity (theoretically) should work.

It means the self loop cost is infinite and any other path with less than this cost is better hence if a path exists from a node to itself, through other nodes, its cost will be finite and it will replace the infinite value.

Practically you can use maximum value of integer as infinite.

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文