分析噪声数据

发布于 2024-08-15 20:22:51 字数 2977 浏览 8 评论 0原文

我最近发射了一枚带有气压高度计的火箭,精确度约为 10 英尺(通过飞行过程中获取的数据计算)。记录的数据以每个样本 0.05 秒的时间增量进行,高度与时间的关系图看起来与缩小整个飞行过程时的情况非常相似。

问题是,当我尝试根据数据计算其他值(例如速度或加速度)时,测量的准确性使计算值几乎毫无价值。我可以使用哪些技术来平滑数据,以便计算(或近似)合理的速度和加速度值?重要的是,重大事件要及时保持原状,最值得注意的是第一次进入的 0 和飞行期间的最高点 (2707)。

随后是高度数据,并以地面以上英尺为单位进行测量。第一次为 0.00,每个样本都在前一个样本之后 0.05 秒。飞行开始时的尖峰是由于升空过程中发生的技术问题造成的,去除尖峰是最佳选择。

我最初尝试使用线性插值,对附近的数据点进行平均,但需要多次迭代才能平滑数据以进行积分,并且曲线的平坦化消除了重要的远地点和地面事件。

非常感谢所有帮助。请注意,这不是完整的数据集,我正在寻找有关更好的数据分析方法的建议,而不是让某人回复转换后的数据集。最好在未来的火箭上使用一种算法,该算法可以在不知道完整飞行数据的情况下预测当前的高度/速度/加速度,但这不是必需的。

00000
00000
00000
00076
00229
00095
00057
00038
00048
00057
00057
00076
00086
00095
00105
00114
00124
00133
00152
00152
00171
00190
00200
00219
00229
00248
00267
00277
00286
00305
00334
00343
00363
00363
00382
00382
00401
00420
00440
00459
00469
00488
00517
00527
00546
00565
00585
00613
00633
00652
00671
00691
00710
00729
00759
00778
00798
00817
00837
00856
00885
00904
00924
00944
00963
00983
01002
01022
01041
01061
01080
01100
01120
01139
01149
01169
01179
01198
01218
01238
01257
01277
01297
01317
01327
01346
01356
01376
01396
01415
01425
01445
01465
01475
01495
01515
01525
01545
01554
01574
01594
01614
01614
01634
01654
01664
01674
01694
01714
01724
01734
01754
01764
01774
01794
01804
01814
01834
01844
01854
01874
01884
01894
01914
01924
01934
01954
01954
01975
01995
01995
02015
02015
02035
02045
02055
02075
02075
02096
02096
02116
02126
02136
02146
02156
02167
02177
02187
02197
02207
02217
02227
02237
02237
02258
02268
02278
02278
02298
02298
02319
02319
02319
02339
02349
02359
02359
02370
02380
02380
02400
02400
01914
02319
02420
02482
02523
02461
02502
02543
02564
02595
02625
02666
02707
02646
02605
02605
02584
02574
02543
02543
02543
02543
02543
02543
02554
02543
02554
02554
02554
02554
02543
02543
02543
02543
02543
02543
02543
02543
02543
02543
02543
02543
02543
02543
02543
02543
02543
02543
02543
02543
02543
02533
02543
02543
02543
02543
02543
02543
02543
02543
02533
02523
02523
02523
02523
02523
02523
02523
02523
02543
02523
02523
02523
02523
02523
02523
02523
02523
02513
02513
02502
02502
02492
02482
02482
02482
02482
02482
02482
02482
02482
02482
02482
02482
02482
02482
02482
02482
02472
02472
02472
02461
02461
02461
02461
02451
02451
02451
02461
02461
02451
02451
02451
02451
02451
02451
02441
02441
02441
02441
02441
02441
02441
02441
02441
02441
02441
02441
02441
02441
02441
02441
02441
02441
02441
02441
02431
02441
02431
02441
02431
02420
02431
02420
02420
02420
02420
02420
02420
02420
02420
02420
02420
02420
02420
02410
02420
02410
02410
02410
02410
02400
02400
02410
02400
02400
02400
02400
02400
02400
02400
02400
02400
02400
02400
02400
02390
02390
02390
02380
02380
02380
02380
02380
02380
02380
02380
02380
02380
02380
02380
02380
02370
02370
02380
02370
02359
02359
02359
02359
02359
02359
02359
02359
02359
02359
02359
02359
02359
02359
02349
02349
02349
02349
02349
02339
02339
02339
02339
02339
02339
02339
02339
02339
02339
02339
02339
02339

I recently launched a rocket with a barometric altimeter that is accurate to roughly 10 ft (calculated via data acquired during flight). The recorded data is in time increments of 0.05 sec per sample and a graph of altitude vs. time looks pretty much like it should when zoomed out over the entire flight.

The problem is when I try to calculate other values such as velocity or acceleration from the data, the accuracy of the measurements makes the calculated values pretty much worthless. What techniques can I use to smooth out the data so that I can calculate (or approximate) reasonable values for the velocity and acceleration? It is important that major events remain in place in time, most notably the 0 for for the first entry and the highest point during flight (2707).

The altitude data follows and is measured in ft above ground level. The first time would be 0.00 and each sample is 0.05 seconds after the previous sample. The spike at the beginning of the flight is due to a technical problem that occurred during liftoff and removing the spike is optimal.

I originally tried using linear interpolation, averaging nearby data points, but it took many iterations to smooth the data enough for integration and the flattening of the curve removed the important apogee and ground level events.

All help is greatly appreciated. Please note this is not the complete data set and I am looking for suggestions on better ways to analyze the data, not for someone to reply with a transformed data set. It would be nice to use an algorithm on board future rockets which can predict current altitude/velocity/acceleration without knowing the full flight data, though that is not required.

00000
00000
00000
00076
00229
00095
00057
00038
00048
00057
00057
00076
00086
00095
00105
00114
00124
00133
00152
00152
00171
00190
00200
00219
00229
00248
00267
00277
00286
00305
00334
00343
00363
00363
00382
00382
00401
00420
00440
00459
00469
00488
00517
00527
00546
00565
00585
00613
00633
00652
00671
00691
00710
00729
00759
00778
00798
00817
00837
00856
00885
00904
00924
00944
00963
00983
01002
01022
01041
01061
01080
01100
01120
01139
01149
01169
01179
01198
01218
01238
01257
01277
01297
01317
01327
01346
01356
01376
01396
01415
01425
01445
01465
01475
01495
01515
01525
01545
01554
01574
01594
01614
01614
01634
01654
01664
01674
01694
01714
01724
01734
01754
01764
01774
01794
01804
01814
01834
01844
01854
01874
01884
01894
01914
01924
01934
01954
01954
01975
01995
01995
02015
02015
02035
02045
02055
02075
02075
02096
02096
02116
02126
02136
02146
02156
02167
02177
02187
02197
02207
02217
02227
02237
02237
02258
02268
02278
02278
02298
02298
02319
02319
02319
02339
02349
02359
02359
02370
02380
02380
02400
02400
01914
02319
02420
02482
02523
02461
02502
02543
02564
02595
02625
02666
02707
02646
02605
02605
02584
02574
02543
02543
02543
02543
02543
02543
02554
02543
02554
02554
02554
02554
02543
02543
02543
02543
02543
02543
02543
02543
02543
02543
02543
02543
02543
02543
02543
02543
02543
02543
02543
02543
02543
02533
02543
02543
02543
02543
02543
02543
02543
02543
02533
02523
02523
02523
02523
02523
02523
02523
02523
02543
02523
02523
02523
02523
02523
02523
02523
02523
02513
02513
02502
02502
02492
02482
02482
02482
02482
02482
02482
02482
02482
02482
02482
02482
02482
02482
02482
02482
02472
02472
02472
02461
02461
02461
02461
02451
02451
02451
02461
02461
02451
02451
02451
02451
02451
02451
02441
02441
02441
02441
02441
02441
02441
02441
02441
02441
02441
02441
02441
02441
02441
02441
02441
02441
02441
02441
02431
02441
02431
02441
02431
02420
02431
02420
02420
02420
02420
02420
02420
02420
02420
02420
02420
02420
02420
02410
02420
02410
02410
02410
02410
02400
02400
02410
02400
02400
02400
02400
02400
02400
02400
02400
02400
02400
02400
02400
02390
02390
02390
02380
02380
02380
02380
02380
02380
02380
02380
02380
02380
02380
02380
02380
02370
02370
02380
02370
02359
02359
02359
02359
02359
02359
02359
02359
02359
02359
02359
02359
02359
02359
02349
02349
02349
02349
02349
02339
02339
02339
02339
02339
02339
02339
02339
02339
02339
02339
02339
02339

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(6

各自安好 2024-08-22 20:22:51

这是我的解决方案,使用 卡尔曼滤波器。如果您想或多或少地平滑,您将需要调整参数(甚至+/-数量级)。

#!/usr/bin/env octave

% Kalman filter to smooth measures of altitude and estimate
% speed and acceleration. The continuous time model is more or less as follows:
% derivative of altitude := speed
% derivative of speed := acceleration
% acceleration is a Wiener process

%------------------------------------------------------------
% Discretization of the continuous-time linear system
% 
%   d  |x|   | 0 1 0 | |x|
%  --- |v| = | 0 0 1 | |v|   + "noise"
%   dt |a|   | 0 0 0 | |a|
%
%   y = [1 0 0] |x|     + "measurement noise"
%               |v|
%               |a|
%
st = 0.05;    % Sampling time
A = [1  st st^2/2;
     0  1  st    ;
     0  0  1];
C = [1 0 0];

%------------------------------------------------------------
% Fine-tune these parameters! (in particular qa and R)
% The acceleration follows a "random walk". The greater is the variance qa,
% the more "reactive" the system is expected to be, i.e.
% the more the acceleration is expected to vary
% The greater is R, the more noisy is your measurement instrument
% (less "accuracy" of the barometric altimeter);
% if you increase R, you will smooth the estimate more
qx = 1.0;                      % Variance of model noise for position
qv = 1.0;                      % Variance of model noise for speed
qa = 50.0;                     % Variance of model noise for acceleration
Q  = diag([qx, qv, qa]);
R  = 100.0;                    % Variance of measurement noise
                               % (10^2, if 10ft is the standard deviation)

load data.txt  % Put your measures in this file

est_position     = zeros(length(data), 1);
est_speed        = zeros(length(data), 1);
est_acceleration = zeros(length(data), 1);

%------------------------------------------------------------
% Kalman filter
xhat = [0;0;0];     % Initial estimate
P    = zeros(3,3);  % Initial error variance
for i=1:length(data),
   y = data(i);
   xpred = A*xhat;                                    % Prediction
   Ppred = A*P*A' + Q;                                % Prediction error variance
   Lambdainv = 1/(C*Ppred*C' + R);
   xhat  = xpred + Ppred*C'*Lambdainv*(y - C*xpred);  % Update estimation
   P = Ppred - Ppred*C'*Lambdainv*C*Ppred;            % Update estimation error variance
   est_position(i)     = xhat(1);
   est_speed(i)        = xhat(2);
   est_acceleration(i) = xhat(3);
end

%------------------------------------------------------------
% Plot
figure(1);
hold on;
plot(data, 'k');               % Black: real data
plot(est_position, 'b');       % Blue:  estimated position
plot(est_speed, 'g');          % Green: estimated speed
plot(est_acceleration, 'r');   % Red:   estimated acceleration
pause

Here is my solution, using a Kalman filter. You will need to tune the parameters (even +- orders of magnitude) if you want to smooth more or less.

#!/usr/bin/env octave

% Kalman filter to smooth measures of altitude and estimate
% speed and acceleration. The continuous time model is more or less as follows:
% derivative of altitude := speed
% derivative of speed := acceleration
% acceleration is a Wiener process

%------------------------------------------------------------
% Discretization of the continuous-time linear system
% 
%   d  |x|   | 0 1 0 | |x|
%  --- |v| = | 0 0 1 | |v|   + "noise"
%   dt |a|   | 0 0 0 | |a|
%
%   y = [1 0 0] |x|     + "measurement noise"
%               |v|
%               |a|
%
st = 0.05;    % Sampling time
A = [1  st st^2/2;
     0  1  st    ;
     0  0  1];
C = [1 0 0];

%------------------------------------------------------------
% Fine-tune these parameters! (in particular qa and R)
% The acceleration follows a "random walk". The greater is the variance qa,
% the more "reactive" the system is expected to be, i.e.
% the more the acceleration is expected to vary
% The greater is R, the more noisy is your measurement instrument
% (less "accuracy" of the barometric altimeter);
% if you increase R, you will smooth the estimate more
qx = 1.0;                      % Variance of model noise for position
qv = 1.0;                      % Variance of model noise for speed
qa = 50.0;                     % Variance of model noise for acceleration
Q  = diag([qx, qv, qa]);
R  = 100.0;                    % Variance of measurement noise
                               % (10^2, if 10ft is the standard deviation)

load data.txt  % Put your measures in this file

est_position     = zeros(length(data), 1);
est_speed        = zeros(length(data), 1);
est_acceleration = zeros(length(data), 1);

%------------------------------------------------------------
% Kalman filter
xhat = [0;0;0];     % Initial estimate
P    = zeros(3,3);  % Initial error variance
for i=1:length(data),
   y = data(i);
   xpred = A*xhat;                                    % Prediction
   Ppred = A*P*A' + Q;                                % Prediction error variance
   Lambdainv = 1/(C*Ppred*C' + R);
   xhat  = xpred + Ppred*C'*Lambdainv*(y - C*xpred);  % Update estimation
   P = Ppred - Ppred*C'*Lambdainv*C*Ppred;            % Update estimation error variance
   est_position(i)     = xhat(1);
   est_speed(i)        = xhat(2);
   est_acceleration(i) = xhat(3);
end

%------------------------------------------------------------
% Plot
figure(1);
hold on;
plot(data, 'k');               % Black: real data
plot(est_position, 'b');       % Blue:  estimated position
plot(est_speed, 'g');          % Green: estimated speed
plot(est_acceleration, 'r');   % Red:   estimated acceleration
pause
我是有多爱你 2024-08-22 20:22:51

您可以尝试通过低通滤波器运行数据。这将消除高频噪声。也许是一个简单的 FIR。

此外,您可以从原始数据中提取主要事件,但对速度和加速度数据使用多项式拟合。

You could try running the data through a low-pass filter. This will smooth out high frequency noise. Maybe a simple FIR.

Also, you could pull your major events from the raw data, but use a polynomial fit for velocity and acceleration data.

深海少女心 2024-08-22 20:22:51

您是否尝试过对您的值执行滚动窗口平均值?基本上,您执行一个窗口,例如 10 个值(从 0 到 9),并计算其平均值。然后将窗口滚动一点(从 1 到 10)并重新计算。这将平滑值,同时保持点数相对不变。较大的窗口可以提供更平滑的数据,但代价是丢失更多的高频信息。

如果您的数据碰巧出现异常峰值,您可以使用中位数而不是平均值。

您还可以尝试使用自相关

have you tried performing a scrolling window average of your values ? Basically you perform a window of, say 10 values (from 0 to 9), and calculate its average. then you scroll the window one point (from 1 to 10) and recalculate. This will smooth the values while keeping the number of points relatively unchanged. Larger windows give smoother data at the price of loosing more high-frequency information.

You can use the median instead of the average if your data happen to present outlier spikes.

You can also try with Autocorrelation.

给妤﹃绝世温柔 2024-08-22 20:22:51

分析数据的一种方法是尝试将其与某个模型相匹配,生成一个函数,然后 测试它对您的数据集的适用性...这可能相当复杂,并且可能是不必要的...但重点是,您可以匹配而不是直接从您的数据生成加速度/速度数据它到你的模型(对于火箭来说相当简单,向上加速,然后缓慢恒速下降。)至少我在物理实验中会这样做。

至于在飞行过程中产生某种速度和加速度感,这应该是简单地对几个不同结果的速度进行平均。大致如下:
估计电压 = 测量电压*(1/n) + (1 - 1/n)*估计电压。根据您希望速度调整的速度设置 n。

One way you can approach analyzing you data is to try to match it too some model, generate a function, and then test its fitness to your data set.... This can be rather complicated and is probably unnecessary... but the point is that instead of generating acceleration/velocity data directly from you data you can match it to your model (rather simple for a rocket, some acceleration upwards followed by a slow constant speed descent.) At least that how i would do it in a physics experiment.

As for generating some sense of velocity and acceleration during flight this should be as simple averaging the velocity from several different results. Something along the lines of:
EsitimatedV = Vmeasured*(1/n) + (1 - 1/n)*EstimatedV. Set n based on how quickly you want your velocity to adjust by.

红衣飘飘貌似仙 2024-08-22 20:22:51

我对火箭一无所知。我画出了你的观点,它们看起来很可爱。

根据我在该图中看到的内容,让我假设通常有一个远地点,并且产生您的点的函数在该远地点没有关于时间的导数。

建议:

  1. 在整个飞行过程中监控最大高度。
  2. 通过(简单地说)将最近的几个点与当前的最大值进行比较来持续观察最高点。
  3. 在达到最大值之前,固定 (0,0) 并使用一些任意的结组来计算直至当前高度的自然样条线集合。使用样条线的残差来决定丢弃哪些数据。重新计算样条线。
  4. 最多保留最近计算的样条线。开始为超出远地点的曲线计算一组新的样条线。

I know nothing about rockets. I plotted your points and they look lovely.

Based on what I see in that plot let me assume that there is usually a single apogee and that the function that gave rise to your points has no derivative wrt time at that apogee.

Suggestion:

  1. Monitor maximum altitude throughout the flight.
  2. Continuously watch for the apogee by (say, simply) comparing the most recent few points with the current maximum.
  3. Until you reach the maximum, with (0,0) fixed and some arbitrary set of knots calculate a collection of natural splines up to the current altitude. Use the residuals wrt the splines to decide which data to discard. Recalculate the splines.
  4. At the maximum retain the most recently calculate splines. Start calculating a new set of splines for the curve beyond the apogee.
甜尕妞 2024-08-22 20:22:51

ARIMA 模型并寻找残差中的自相关是标准程序。另一个波动模型。

ARIMA model and look for autocorrelation in the residual is standard procedure. Volatility model another.

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文