Python - numpy.void 对象的酸洗失败

发布于 2024-08-15 20:16:14 字数 8216 浏览 9 评论 0原文

    >>> idmapfile = open("idmap", mode="w")
    >>> pickle.dump(idMap, idmapfile)
    >>> idmapfile.close()
    >>> idmapfile = open("idmap")
    >>> unpickled = pickle.load(idmapfile)
    >>> unpickled == idMap
False
idMap[1]
{1537: (552, 1, 1537, 17.793827056884766, 3), 1540: (4220, 1, 1540, 19.31205940246582, 3), 1544: (592, 1, 1544, 18.129131317138672, 3), 1675: (529, 1, 1675, 18.347782135009766, 3), 1550: (4048, 1, 1550, 19.31205940246582, 3), 1424: (1528, 1, 1424, 19.744396209716797, 3), 1681: (1265, 1, 1681, 19.596025466918945, 3), 1560: (3457, 1, 1560, 20.530569076538086, 3), 1690: (477, 1, 1690, 17.395542144775391, 3), 1691: (554, 1, 1691, 13.446117401123047, 3), 1436: (3010, 1, 1436, 19.596025466918945, 3), 1434: (3183, 1, 1434, 19.744396209716797, 3), 1441: (3570, 1, 1441, 20.589576721191406, 3), 1435: (476, 1, 1435, 19.640911102294922, 3), 1444: (527, 1, 1444, 17.98480224609375, 3), 1478: (1897, 1, 1478, 19.596025466918945, 3), 1575: (614, 1, 1575, 19.371648788452148, 3), 1586: (2189, 1, 1586, 19.31205940246582, 3), 1716: (3470, 1, 1716, 19.158674240112305, 3), 1590: (2278, 1, 1590, 19.596025466918945, 3), 1463: (991, 1, 1463, 19.31205940246582, 3), 1594: (1890, 1, 1594, 19.596025466918945, 3), 1467: (1087, 1, 1467, 19.31205940246582, 3), 1596: (3759, 1, 1596, 19.744396209716797, 3), 1602: (3011, 1, 1602, 20.530569076538086, 3), 1547: (490, 1, 1547, 17.994071960449219, 3), 1605: (658, 1, 1605, 19.31205940246582, 3), 1606: (1794, 1, 1606, 16.964881896972656, 3), 1719: (1826, 1, 1719, 19.596025466918945, 3), 1617: (583, 1, 1617, 11.894925117492676, 3), 1492: (3441, 1, 1492, 20.500667572021484, 3), 1622: (3215, 1, 1622, 19.31205940246582, 3), 1628: (2761, 1, 1628, 19.744396209716797, 3), 1502: (1563, 1, 1502, 19.596025466918945, 3), 1632: (1108, 1, 1632, 15.457141876220703, 3), 1468: (3779, 1, 1468, 19.596025466918945, 3), 1642: (3970, 1, 1642, 19.744396209716797, 3), 1518: (612, 1, 1518, 18.570245742797852, 3), 1647: (854, 1, 1647, 16.964881896972656, 3), 1650: (2099, 1, 1650, 20.439058303833008, 3), 1651: (540, 1, 1651, 18.552841186523438, 3), 1653: (613, 1, 1653, 19.237197875976563, 3), 1532: (537, 1, 1532, 18.885730743408203, 3)}

>>> unpickled[1]
{1537: (64880, 1638, 56700, -1.0808743559293829e+18, 152), 1540: (64904, 1638, 0, 0.0, 0), 1544: (54472, 1490, 0, 0.0, 0), 1675: (6464, 1509, 0, 0.0, 0), 1550: (43592, 1510, 0, 0.0, 0), 1424: (43616, 1510, 0, 0.0, 0), 1681: (0, 0, 0, 0.0, 0), 1560: (400, 152, 400, 2.1299736657737219e-43, 0), 1690: (408, 152, 408, 2.7201111331839077e+26, 34), 1435: (424, 152, 61512, 1.0122952080313192e-39, 0), 1436: (400, 152, 400, 20.250289916992188, 3), 1434: (424, 152, 62080, 1.0122952080313192e-39, 0), 1441: (400, 152, 400, 12.250144958496094, 3), 1691: (424, 152, 42608, 15.813941955566406, 3), 1444: (400, 152, 400, 19.625289916992187, 3), 1606: (424, 152, 42432, 5.2947192852601414e-22, 41), 1575: (400, 152, 400, 6.2537390010262572e-36, 0), 1586: (424, 152, 42488, 1.0122601755697111e-39, 0), 1716: (400, 152, 400, 6.2537390010262572e-36, 0), 1590: (424, 152, 64144, 1.0126357235581501e-39, 0), 1463: (400, 152, 400, 6.2537390010262572e-36, 0), 1594: (424, 152, 32672, 17.002994537353516, 3), 1467: (400, 152, 400, 19.750289916992187, 3), 1596: (424, 152, 7176, 1.0124003054161436e-39, 0), 1602: (400, 152, 400, 18.500289916992188, 3), 1547: (424, 152, 7000, 1.0124003054161436e-39, 0), 1605: (400, 152, 400, 20.500289916992188, 3), 1478: (424, 152, 42256, -6.0222748507426518e+30, 222), 1719: (400, 152, 400, 6.2537390010262572e-36, 0), 1617: (424, 152, 16472, 1.0124283313854301e-39, 0), 1492: (400, 152, 400, 6.2537390010262572e-36, 0), 1622: (424, 152, 35304, 1.0123190301052127e-39, 0), 1628: (400, 152, 400, 6.2537390010262572e-36, 0), 1502: (424, 152, 63152, 19.627988815307617, 3), 1632: (400, 152, 400, 19.375289916992188, 3), 1468: (424, 152, 38088, 1.0124213248931084e-39, 0), 1642: (400, 152, 400, 6.2537390010262572e-36, 0), 1518: (424, 152, 63896, 1.0127436235399031e-39, 0), 1647: (400, 152, 400, 6.2537390010262572e-36, 0), 1650: (424, 152, 53424, 16.752857208251953, 3), 1651: (400, 152, 400, 19.250289916992188, 3), 1653: (424, 152, 50624, 1.0126497365427934e-39, 0), 1532: (400, 152, 400, 6.2537390010262572e-36, 0)}

钥匙出来得很好,数值却搞砸了。我尝试以二进制模式加载文件同样的事情;没有解决问题。知道我做错了什么吗?


编辑: 这是二进制代码。请注意,未腌制的对象中的值是不同的。

>>> idmapfile = open("idmap", mode="wb")
>>> pickle.dump(idMap, idmapfile)
>>> idmapfile.close()
>>> idmapfile = open("idmap", mode="rb")
>>> unpickled = pickle.load(idmapfile)
>>> unpickled==idMap
False
>>> unpickled[1]
{1537: (12176, 2281, 56700, -1.0808743559293829e+18, 152), 1540: (0, 0, 15934, 2.7457842047810522e+26, 108), 1544: (400, 152, 400, 4.9518498821046956e+27, 53), 1675: (408, 152, 408, 2.7201111331839077e+26, 34), 1550: (456, 152, 456, -1.1349175514578289e+18, 152), 1424: (432, 152, 432, 4.5939047815653343e-40, 11), 1681: (408, 152, 408, 2.1299736657737219e-43, 0), 1560: (376, 152, 376, 2.1299736657737219e-43, 0), 1690: (376, 152, 376, 2.1299736657737219e-43, 0), 1435: (376, 152, 376, 2.1299736657737219e-43, 0), 1436: (376, 152, 376, 2.1299736657737219e-43, 0), 1434: (376, 152, 376, 2.1299736657737219e-43, 0), 1441: (376, 152, 376, 2.1299736657737219e-43, 0), 1691: (376, 152, 376, 2.1299736657737219e-43, 0), 1444: (376, 152, 376, 2.1299736657737219e-43, 0), 1606: (25784, 2281, 376, -3.2883343074537754e+26, 34), 1575: (24240, 2281, 376, 2.1299736657737219e-43, 0), 1586: (24240, 2281, 376, 2.1299736657737219e-43, 0), 1716: (24240, 2281, 376, -3.0093091599657311e-35, 26), 1590: (24240, 2281, 376, 2.1299736657737219e-43, 0), 1463: (24240, 2281, 376, 2.1299736657737219e-43, 0), 1594: (24240, 2281, 376, -4123208450048.0, 196), 1467: (25784, 2281, 376, 2.1299736657737219e-43, 0), 1596: (25784, 2281, 376, 2.1299736657737219e-43, 0), 1602: (25784, 2281, 376, -5.9963281433905448e+26, 76), 1547: (25784, 2281, 376, -218106240.0, 139), 1605: (25784, 2281, 376, -3.7138649803377281e+27, 56), 1478: (376, 152, 376, 2.1299736657737219e-43, 0), 1719: (25784, 2281, 376, 2.1299736657737219e-43, 0), 1617: (25784, 2281, 376, -1.4411779941597184e+17, 237), 1492: (25784, 2281, 376, 2.8596493694487798e-30, 80), 1622: (25784, 2281, 376, 184686084096.0, 93), 1628: (1336, 152, 1336, 3.1691839245470052e+29, 179), 1502: (1272, 152, 1272, -5.2042207205116645e-17, 99), 1632: (1208, 152, 1208, 2.1299736657737219e-43, 0), 1468: (1144, 152, 1144, 2.1299736657737219e-43, 0), 1642: (1080, 152, 1080, 2.1299736657737219e-43, 0), 1518: (1016, 152, 1016, 4.0240902787680023e+35, 145), 1647: (952, 152, 952, -985172619034624.0, 237), 1650: (888, 152, 888, 12094787289088.0, 66), 1651: (824, 152, 824, 2.1299736657737219e-43, 0), 1653: (760, 152, 760, 0.00018310768064111471, 238), 1532: (696, 152, 696, 8.8978061885676389e+26, 125)}

好的,我已经隔离了问题,但不知道为什么会这样。首先,显然我要腌制的不是元组(尽管它们看起来像),而是 numpy.void 类型。这是一个系列来说明这个问题。

first = run0.detections[0]
>>> first
(1, 19, 1578, 82.637763977050781, 1)
>>> type(first)
<type 'numpy.void'>
>>> firstTuple = tuple(first)
>>> theFile = open("pickleTest", "w")
>>> pickle.dump(first, theFile)
>>> theTupleFile = open("pickleTupleTest", "w")
>>> pickle.dump(firstTuple, theTupleFile)
>>> theFile.close()
>>> theTupleFile.close()
>>> first
(1, 19, 1578, 82.637763977050781, 1)
>>> firstTuple
(1, 19, 1578, 82.637764, 1)
>>> theFile = open("pickleTest", "r")
>>> theTupleFile = open("pickleTupleTest", "r")
>>> unpickledTuple = pickle.load(theTupleFile)
>>> unpickledVoid = pickle.load(theFile)
>>> type(unpickledVoid)
<type 'numpy.void'>
>>> type(unpickledTuple)
<type 'tuple'>
>>> unpickledTuple
(1, 19, 1578, 82.637764, 1)
>>> unpickledTuple == firstTuple
True
>>> unpickledVoid == first
False
>>> unpickledVoid
(7936, 1705, 56700, -1.0808743559293829e+18, 152)
>>> first
(1, 19, 1578, 82.637763977050781, 1)
    >>> idmapfile = open("idmap", mode="w")
    >>> pickle.dump(idMap, idmapfile)
    >>> idmapfile.close()
    >>> idmapfile = open("idmap")
    >>> unpickled = pickle.load(idmapfile)
    >>> unpickled == idMap
False
idMap[1]
{1537: (552, 1, 1537, 17.793827056884766, 3), 1540: (4220, 1, 1540, 19.31205940246582, 3), 1544: (592, 1, 1544, 18.129131317138672, 3), 1675: (529, 1, 1675, 18.347782135009766, 3), 1550: (4048, 1, 1550, 19.31205940246582, 3), 1424: (1528, 1, 1424, 19.744396209716797, 3), 1681: (1265, 1, 1681, 19.596025466918945, 3), 1560: (3457, 1, 1560, 20.530569076538086, 3), 1690: (477, 1, 1690, 17.395542144775391, 3), 1691: (554, 1, 1691, 13.446117401123047, 3), 1436: (3010, 1, 1436, 19.596025466918945, 3), 1434: (3183, 1, 1434, 19.744396209716797, 3), 1441: (3570, 1, 1441, 20.589576721191406, 3), 1435: (476, 1, 1435, 19.640911102294922, 3), 1444: (527, 1, 1444, 17.98480224609375, 3), 1478: (1897, 1, 1478, 19.596025466918945, 3), 1575: (614, 1, 1575, 19.371648788452148, 3), 1586: (2189, 1, 1586, 19.31205940246582, 3), 1716: (3470, 1, 1716, 19.158674240112305, 3), 1590: (2278, 1, 1590, 19.596025466918945, 3), 1463: (991, 1, 1463, 19.31205940246582, 3), 1594: (1890, 1, 1594, 19.596025466918945, 3), 1467: (1087, 1, 1467, 19.31205940246582, 3), 1596: (3759, 1, 1596, 19.744396209716797, 3), 1602: (3011, 1, 1602, 20.530569076538086, 3), 1547: (490, 1, 1547, 17.994071960449219, 3), 1605: (658, 1, 1605, 19.31205940246582, 3), 1606: (1794, 1, 1606, 16.964881896972656, 3), 1719: (1826, 1, 1719, 19.596025466918945, 3), 1617: (583, 1, 1617, 11.894925117492676, 3), 1492: (3441, 1, 1492, 20.500667572021484, 3), 1622: (3215, 1, 1622, 19.31205940246582, 3), 1628: (2761, 1, 1628, 19.744396209716797, 3), 1502: (1563, 1, 1502, 19.596025466918945, 3), 1632: (1108, 1, 1632, 15.457141876220703, 3), 1468: (3779, 1, 1468, 19.596025466918945, 3), 1642: (3970, 1, 1642, 19.744396209716797, 3), 1518: (612, 1, 1518, 18.570245742797852, 3), 1647: (854, 1, 1647, 16.964881896972656, 3), 1650: (2099, 1, 1650, 20.439058303833008, 3), 1651: (540, 1, 1651, 18.552841186523438, 3), 1653: (613, 1, 1653, 19.237197875976563, 3), 1532: (537, 1, 1532, 18.885730743408203, 3)}

>>> unpickled[1]
{1537: (64880, 1638, 56700, -1.0808743559293829e+18, 152), 1540: (64904, 1638, 0, 0.0, 0), 1544: (54472, 1490, 0, 0.0, 0), 1675: (6464, 1509, 0, 0.0, 0), 1550: (43592, 1510, 0, 0.0, 0), 1424: (43616, 1510, 0, 0.0, 0), 1681: (0, 0, 0, 0.0, 0), 1560: (400, 152, 400, 2.1299736657737219e-43, 0), 1690: (408, 152, 408, 2.7201111331839077e+26, 34), 1435: (424, 152, 61512, 1.0122952080313192e-39, 0), 1436: (400, 152, 400, 20.250289916992188, 3), 1434: (424, 152, 62080, 1.0122952080313192e-39, 0), 1441: (400, 152, 400, 12.250144958496094, 3), 1691: (424, 152, 42608, 15.813941955566406, 3), 1444: (400, 152, 400, 19.625289916992187, 3), 1606: (424, 152, 42432, 5.2947192852601414e-22, 41), 1575: (400, 152, 400, 6.2537390010262572e-36, 0), 1586: (424, 152, 42488, 1.0122601755697111e-39, 0), 1716: (400, 152, 400, 6.2537390010262572e-36, 0), 1590: (424, 152, 64144, 1.0126357235581501e-39, 0), 1463: (400, 152, 400, 6.2537390010262572e-36, 0), 1594: (424, 152, 32672, 17.002994537353516, 3), 1467: (400, 152, 400, 19.750289916992187, 3), 1596: (424, 152, 7176, 1.0124003054161436e-39, 0), 1602: (400, 152, 400, 18.500289916992188, 3), 1547: (424, 152, 7000, 1.0124003054161436e-39, 0), 1605: (400, 152, 400, 20.500289916992188, 3), 1478: (424, 152, 42256, -6.0222748507426518e+30, 222), 1719: (400, 152, 400, 6.2537390010262572e-36, 0), 1617: (424, 152, 16472, 1.0124283313854301e-39, 0), 1492: (400, 152, 400, 6.2537390010262572e-36, 0), 1622: (424, 152, 35304, 1.0123190301052127e-39, 0), 1628: (400, 152, 400, 6.2537390010262572e-36, 0), 1502: (424, 152, 63152, 19.627988815307617, 3), 1632: (400, 152, 400, 19.375289916992188, 3), 1468: (424, 152, 38088, 1.0124213248931084e-39, 0), 1642: (400, 152, 400, 6.2537390010262572e-36, 0), 1518: (424, 152, 63896, 1.0127436235399031e-39, 0), 1647: (400, 152, 400, 6.2537390010262572e-36, 0), 1650: (424, 152, 53424, 16.752857208251953, 3), 1651: (400, 152, 400, 19.250289916992188, 3), 1653: (424, 152, 50624, 1.0126497365427934e-39, 0), 1532: (400, 152, 400, 6.2537390010262572e-36, 0)}

The keys come out fine, the values are screwed up. I tried same thing loading file in binary mode; didn't fix the problem. Any idea what I'm doing wrong?


Edit:
Here's the code with binary. Note that the values are different in the unpickled object.

>>> idmapfile = open("idmap", mode="wb")
>>> pickle.dump(idMap, idmapfile)
>>> idmapfile.close()
>>> idmapfile = open("idmap", mode="rb")
>>> unpickled = pickle.load(idmapfile)
>>> unpickled==idMap
False
>>> unpickled[1]
{1537: (12176, 2281, 56700, -1.0808743559293829e+18, 152), 1540: (0, 0, 15934, 2.7457842047810522e+26, 108), 1544: (400, 152, 400, 4.9518498821046956e+27, 53), 1675: (408, 152, 408, 2.7201111331839077e+26, 34), 1550: (456, 152, 456, -1.1349175514578289e+18, 152), 1424: (432, 152, 432, 4.5939047815653343e-40, 11), 1681: (408, 152, 408, 2.1299736657737219e-43, 0), 1560: (376, 152, 376, 2.1299736657737219e-43, 0), 1690: (376, 152, 376, 2.1299736657737219e-43, 0), 1435: (376, 152, 376, 2.1299736657737219e-43, 0), 1436: (376, 152, 376, 2.1299736657737219e-43, 0), 1434: (376, 152, 376, 2.1299736657737219e-43, 0), 1441: (376, 152, 376, 2.1299736657737219e-43, 0), 1691: (376, 152, 376, 2.1299736657737219e-43, 0), 1444: (376, 152, 376, 2.1299736657737219e-43, 0), 1606: (25784, 2281, 376, -3.2883343074537754e+26, 34), 1575: (24240, 2281, 376, 2.1299736657737219e-43, 0), 1586: (24240, 2281, 376, 2.1299736657737219e-43, 0), 1716: (24240, 2281, 376, -3.0093091599657311e-35, 26), 1590: (24240, 2281, 376, 2.1299736657737219e-43, 0), 1463: (24240, 2281, 376, 2.1299736657737219e-43, 0), 1594: (24240, 2281, 376, -4123208450048.0, 196), 1467: (25784, 2281, 376, 2.1299736657737219e-43, 0), 1596: (25784, 2281, 376, 2.1299736657737219e-43, 0), 1602: (25784, 2281, 376, -5.9963281433905448e+26, 76), 1547: (25784, 2281, 376, -218106240.0, 139), 1605: (25784, 2281, 376, -3.7138649803377281e+27, 56), 1478: (376, 152, 376, 2.1299736657737219e-43, 0), 1719: (25784, 2281, 376, 2.1299736657737219e-43, 0), 1617: (25784, 2281, 376, -1.4411779941597184e+17, 237), 1492: (25784, 2281, 376, 2.8596493694487798e-30, 80), 1622: (25784, 2281, 376, 184686084096.0, 93), 1628: (1336, 152, 1336, 3.1691839245470052e+29, 179), 1502: (1272, 152, 1272, -5.2042207205116645e-17, 99), 1632: (1208, 152, 1208, 2.1299736657737219e-43, 0), 1468: (1144, 152, 1144, 2.1299736657737219e-43, 0), 1642: (1080, 152, 1080, 2.1299736657737219e-43, 0), 1518: (1016, 152, 1016, 4.0240902787680023e+35, 145), 1647: (952, 152, 952, -985172619034624.0, 237), 1650: (888, 152, 888, 12094787289088.0, 66), 1651: (824, 152, 824, 2.1299736657737219e-43, 0), 1653: (760, 152, 760, 0.00018310768064111471, 238), 1532: (696, 152, 696, 8.8978061885676389e+26, 125)}

OK I've isolated the problem, but don't know why it's so. First, apparently what I'm pickling are not tuples (though they look like it), but instead numpy.void types. Here is a series to illustrate the problem.

first = run0.detections[0]
>>> first
(1, 19, 1578, 82.637763977050781, 1)
>>> type(first)
<type 'numpy.void'>
>>> firstTuple = tuple(first)
>>> theFile = open("pickleTest", "w")
>>> pickle.dump(first, theFile)
>>> theTupleFile = open("pickleTupleTest", "w")
>>> pickle.dump(firstTuple, theTupleFile)
>>> theFile.close()
>>> theTupleFile.close()
>>> first
(1, 19, 1578, 82.637763977050781, 1)
>>> firstTuple
(1, 19, 1578, 82.637764, 1)
>>> theFile = open("pickleTest", "r")
>>> theTupleFile = open("pickleTupleTest", "r")
>>> unpickledTuple = pickle.load(theTupleFile)
>>> unpickledVoid = pickle.load(theFile)
>>> type(unpickledVoid)
<type 'numpy.void'>
>>> type(unpickledTuple)
<type 'tuple'>
>>> unpickledTuple
(1, 19, 1578, 82.637764, 1)
>>> unpickledTuple == firstTuple
True
>>> unpickledVoid == first
False
>>> unpickledVoid
(7936, 1705, 56700, -1.0808743559293829e+18, 152)
>>> first
(1, 19, 1578, 82.637763977050781, 1)

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(4

心碎无痕… 2024-08-22 20:16:14

我同意。我认为序列化 numpy.void 示例存在问题,

该示例不起作用(Python 2.7.3,numpy 1.6.1):

import pickle, numpy as np
my_array = np.array([('hello', 45.5, 'world')], dtype=[('a', str, 10), ('b', float), ('c', str,10)])
my_void = my_array[0]
print my_void
print pickle.loads(pickle.dumps(my_void))

它将打印:

('hello', 45.5, 'world')
('\xc0\x00llo', 45.5, 'world')

第一个看起来像一个元组,但它是实际上是一个 numpy.void

所以为了避免这种情况,你不能有 numpy.void,你应该用 numpy.array() 包装你的 void > 或在 numpy.void 上调用 .tolist()

编辑:numpy https://github.com/numpy/numpy/pull/3188 中有一个错误

I agree. I think there is a problem with serializing numpy.void

example that doesn't work (Python 2.7.3, numpy 1.6.1):

import pickle, numpy as np
my_array = np.array([('hello', 45.5, 'world')], dtype=[('a', str, 10), ('b', float), ('c', str,10)])
my_void = my_array[0]
print my_void
print pickle.loads(pickle.dumps(my_void))

which will print:

('hello', 45.5, 'world')
('\xc0\x00llo', 45.5, 'world')

The first looks like a tuple, but it is actually a numpy.void

So to avoid this you can't have numpy.void, you should instead wrap your void with numpy.array() or call .tolist() on your numpy.void.

Edit: There is a bug in numpy https://github.com/numpy/numpy/pull/3188

只为守护你 2024-08-22 20:16:14

你的系统有问题(文件系统?);我会尝试以二进制模式进行酸洗;使用转储(idMap,idmapfile,协议= 2)

Something with your system (filesystem?) ; I would try pickling in binary mode; use dump(idMap, idmapfile, protocol=2)

嗳卜坏 2024-08-22 20:16:14

因此,使用 python31,我对您的示例做了一个小小的更改,并且效果很好。请注意,我在打开的文件中添加了表示二进制的“b”,我对所有协议都进行了尝试,并且它适用于每个协议

idmapfile = open("idmap", mode="wb")
pickle.dump(idMap, idmapfile)
idmapfile.close()
idmapfile = open("idmap", "rb")
unpickled = pickle.load(idmapfile)
print ('they are equal', unpickled == idMap)


src> ./pick.py
they are equal True

So, using python31 I made just a small change to your example and it worked fine. Note that I added the "b" for binary in the file open's I tried this with all protocols and it worked for each

idmapfile = open("idmap", mode="wb")
pickle.dump(idMap, idmapfile)
idmapfile.close()
idmapfile = open("idmap", "rb")
unpickled = pickle.load(idmapfile)
print ('they are equal', unpickled == idMap)


src> ./pick.py
they are equal True
独闯女儿国 2024-08-22 20:16:14

因此,pickling 仅适用于顶级模块函数和类,并且不会 pickle 类数据,因此,如果需要某些 numpy 类代码/数据来生成 numpy void 类型的表示,pickling 将不起作用正如预期的那样。 numpy 包可能已经实现了一个内部 repr 将 void 类型打印为元组,如果是这种情况,那么您腌制的内容肯定不会是您打印的内容。 – jottos 2009 年 12 月 29 日 18:42

so, pickling will only work with top level module functions and classes, and will not pickle class data, so if some numpy class code/data are required to produce a representation of the numpy void type pickling isn't going to work as expected. It may be that the numpy package has implemented an internal repr to print the void type as a tuple, if this is the case then what you pickled certainly is not going to be what you printed. – jottos Dec 29 '09 at 18:42

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文