AMN 和数学逻辑符号

发布于 2024-08-14 06:21:42 字数 261 浏览 16 评论 0原文

我不确定这是否适合 stackoverflow,但我不知道还能去哪里问。我正在研究 B 方法来证明需求规范的一致性,并且在指定操作的先决条件时,我对逻辑数学符号有疑问。

简化原始问题,我有一个变量,它是 FLIGHT_NO x TIME x TIME 之间笛卡尔积的子集 flights,其中对于每个成员 (no,td,ta),no 表示航班的数量航班,td 为出发时间,ta 为到达时间。如何使用数学逻辑符号获得 flights 中 td 值最大的元素?

I'm not sure this is appropriate for stackoverflow, but I don't know where else to ask. I'm studying the B-Method for proving consistence in requirement specifications, and I have an issue with the logic math notation when specifying the pre conditions of the operations.

Simplifying the original problem, I have a variable which is a subset flights of the cartesian product between FLIGHT_NO x TIME x TIME, where for each member (no,td,ta), no means the number of the flight, td the time of departure and ta the tme of arrival. How can I get, using math logic notation, the element of flights that has the biggest value of td?

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(3

执妄 2024-08-21 06:21:42

您想要获取这样的元素,还是测试您拥有的元素是否满足此属性?我这么问是因为第二个似乎是手术的合理先决条件。我不太了解B法的具体情况;我查看了一些文档,但找不到快速参考,因此这在某些细节上可能是错误的。

第二个应该如下所示(prj2 用于第二个投影):

HasGreatestTd(flight) = flight \in flights \and \forall flight' (flight' \in flights => prj2(flight) >= prj2(flight'))

那么第一个是:

flightWithGreatestTd = choice({flight | HasGreatestTd(flight)})

Do you want to get such an element, or to test that an element you have satisfies this property? I am asking because the second seems a sensible precondition to an operation. I don't know the B-Method specifically; I've looked at some documents, but can't find a quick reference, so this may be wrong in some details.

The second should look like this (prj2 is used for the second projection):

HasGreatestTd(flight) = flight \in flights \and \forall flight' (flight' \in flights => prj2(flight) >= prj2(flight'))

Then the first is:

flightWithGreatestTd = choice({flight | HasGreatestTd(flight)})
拿命拼未来 2024-08-21 06:21:42

原谅我的无知,我对B法不熟悉。但是你不能使用唯一性量词吗?它看起来像这样:

存在一个时间 td ,使得对于所有时间 td' , td > 。 td'

以及

对于所有 td、td'、td'',如果 td > td''和td'> td'' then td == td'

当然,这假设集合中只有一个元素。我无法真正判断 B 方法是否允许一阶逻辑的全部功能,但我假设您可以接近这一点。

Forgive my ignorance, I'm not familiar with the B-Method. But couldn't you use the uniqueness quantifier? It'd look something like:

there exists a time td such that for all times td', td > td'

and

for all td, td', td'', if td > td'' and td' > td'' then td == td'

This, of course, assumes that there is exactly one element in the set. I can't really tell if the B-Method allows for the full power of first order logic but I assume you could come close to this.

因为看清所以看轻 2024-08-21 06:21:42

可以在 B 中定义函数。函数具有常量值,将在 ABSTRACT_CONSTANTS 子句中列出,并在 PROPERTIES 子句中定义。我尝试解释如何使用此结构来解决您的问题。

接下来是一小段摘录,其中

  1. 介绍了提供航班信息的笛卡尔积的快捷方式;
定义
    FLIGHT_INFO == FLIGHT_NO * 时间 * 时间
  1. 声明了四个常量,前三个是“访问器”,最后一个将一组非空航班信息映射到出发时间最长的航班信息。

<前><代码>常量
航班编号、出发航班、到达航班、最后航班

  1. 然后将这些常量键入并定义为总函数。请注意,最后一个函数必须将非空集作为输入。在这里我使用了不同的方法来指定这些函数。一个是定义性的(具有等式),另一个是公理化的。

<前><代码>属性
// 打字
航班号:FLIGHT_INFO --> FLIGHT_NO & 航班号
航班出发:FLIGHT_INFO -->时间与时间
航班到达:FLIGHT_INFO -->时间与时间
最后一次飞行:POW1(FLIGHT_INFO) --> FLIGHT_INFO 和
// 价值
Flight_no = %(no, dt, at).(no |-> dt |-> at : FLIGHT_INFO | no) &
Flight_departure = %(no, dt, at).(no |-> dt |-> at : FLIGHT_INFO | dt) &
Flight_arrival = %(no, dt, at).(no |-> dt |-> at : FLIGHT_INFO | at) &
!fs.(fs : POW1(FLIGHT_INFO) =>
last_flight(fs) : fs &
!(fi).(fi : FLIGHT_INFO & fi : fs =>
航班出发(fi)<=航班出发(最后一个航班(fs)))

It is possible to define functions in B. Functions have constant values and are to be listed in the ABSTRACT_CONSTANTS clause, and defined in the PROPERTIES clause. I try to explain how you can use this construct to solve your problem.

Follows a small excerpt where

  1. a shortcut for the cartesian product giving flight information is introduced;
DEFINITIONS
    FLIGHT_INFO == FLIGHT_NO * TIME * TIME
  1. four constants are declared, the first three are "accessors", and the last maps a non-empty set of flight informations to the flight information with the largest departure time.
CONSTANTS
    flight_no, flight_departure, flight_arrival, last_flight
  1. Then these constants are typed and defined as total functions. Note that the last function must take as input a non-empty set. Here I used to different approaches to specify these functions. One is definitional (with an equality), and the other is axiomatic.
PROPERTIES
    // typing 
    flight_no: FLIGHT_INFO --> FLIGHT_NO &
    flight_departure: FLIGHT_INFO --> TIME &
    flight_arrival: FLIGHT_INFO --> TIME &
    last_flight : POW1(FLIGHT_INFO) --> FLIGHT_INFO &
    // value
    flight_no = %(no, dt, at).(no |-> dt |-> at : FLIGHT_INFO | no) &
    flight_departure = %(no, dt, at).(no |-> dt |-> at : FLIGHT_INFO | dt) &
    flight_arrival = %(no, dt, at).(no |-> dt |-> at : FLIGHT_INFO | at) &
    !fs.(fs : POW1(FLIGHT_INFO) =>
       last_flight(fs) : fs &
       !(fi).(fi : FLIGHT_INFO & fi : fs =>
          flight_departure(fi) <= flight_departure(last_flight(fs)))
~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文