We don’t allow questions seeking recommendations for software libraries, tutorials, tools, books, or other off-site resources. You can edit the question so it can be answered with facts and citations.
Closed 9 years ago.
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
接受
或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
发布评论
评论(6)
我是 Mahout / Taste,并希望它能满足您的需求,但为了平衡覆盖范围,让我也指出您:
I'm the developer of Mahout / Taste, and hope it will do what you need, but in the interest of balanced coverage, let me also point you at:
Apache Mahout 是我在该领域找到的唯一一个(我最近也在寻找)。
不过 Weka 也可能是一种选择。
Apache Mahout is the only one I have found for this area (I have been looking recently too).
Though Weka may also be an option.
我必须使用开源推荐系统,我发现了这些系统:
Duine、Apache Mahout、OpenSlopeOne、Cofi、SUGGEST 和 Vogoo。
更多详细信息:
Apache Mahout 构成了数据挖掘领域的 Java 框架。它整合了品味推荐系统,这是一个用于个性化推荐的协作引擎。
Vogoo 是一个实现协同过滤推荐系统的 PHP 框架。它还提供了 Slope-One 代码。
Cofi 库中实现了协作过滤方法的 Java 版本。它是由 Slope-One 算法的创建者 Daniel Lemire 开发的。 Lemire 的网页上还提供了 PHP 版本。
OpenSlopeOne 在 PHP 上提供了一个注重性能的 Slope One 实现。
SUGGEST 是 George Karkys 制作的推荐库,以二进制格式分发。
我在博客上描述了我发现的一切:
http://girlincomputerscience.blogspot.com.br/2012 /11/open-source-recommendation-systems.html
希望有帮助!
I had to work with open source recommendation systems and these are the ones that I found:
Duine, Apache Mahout, OpenSlopeOne, Cofi, SUGGEST and Vogoo.
More details:
Apache Mahout constitutes a Java framework in the data mining area. It has incorporated the Taste Recommender System, a collaborative engine for personalized recommendations.
Vogoo is a PHP framework that implements an collaborative filtering recommender system. It also presents a Slope-One code.
A Java version of the Collaborative Filtering method is implemented in the Cofi library. It was developed by Daniel Lemire, the creator of the Slope-One algorithms. There is also an PHP version available in Lemire's webpage.
OpenSlopeOne offers an Slope One implementation on PHP that cares about performance.
SUGGEST is a recommendation library made by George Karkys and distributed in a binary format.
I described everything I found out here on my blog:
http://girlincomputerscience.blogspot.com.br/2012/11/open-source-recommendation-systems.html
hope it helps!
我刚刚开始使用 easyrec。论坛不是很活跃,尽管我的问题确实得到了解答。另外,他们有一个演示服务器,因此您可以在不安装任何东西的情况下测试推荐工具。我喜欢他们的 javascript API 以及跟踪不同类型推荐的方法的项目。目前,他们仅支持 slope one 推荐器 - 如果您正在寻找就这方面的灵活性而言,mahout 轻而易举地获胜(尽管您可以< a href="http://easyrec.sourceforge.net/wiki/index.php?title=Plugin_Guide" rel="nofollow">为 easyrec 编写自己的插件)。
I just started using easyrec. The forums are not very active, though I did get my questions answered. Plus they have a demo server so you can test drive the recommendation tools without installing anything. I liked their javascript API and way to track recommendations of different types of items. Currently, they only support the slope one recommender--if you are looking for flexibility in this regard, mahout wins hands down (though you can write your own plugins for easyrec).
lenskit 似乎是另一个很好的 Java 推荐引擎,由 grouplens 团队提供。
lenskit seems another good recommendation engine in Java, provided by the grouplens team.
如果您更多地寻找原始引擎,而不是专门为 amazon 或 netflix 配置的引擎,那么 Minion 提供“文档相似性度量”。
If you're looking more for the raw engine, rather than something specifically configured for amazon or netflix, then Minion provides 'document similarity measures'.