Scala 2.8 集合设计教程

发布于 2024-08-11 07:29:06 字数 497 浏览 6 评论 0原文

我的困惑之后,有哪些好的资源可以解释新的Scala 2.8 集合库已经结构化。我有兴趣找到有关以下内容如何组合在一起的一些信息:

  • 集合类/特征本身(例如ListIterable
  • 为什么喜欢 类存在(例如 TraversableLike
  • 伴随方法的用途(例如 List.companion
  • 我如何知道哪些隐式对象在作用域内给定点

Following on from my breathless confusion, what are some good resources which explain how the new Scala 2.8 collections library has been structured. I'm interested to find some information on how the following fit together:

  • The collection classes/traits themselves (e.g. List, Iterable)
  • Why the Like classes exist (e.g. TraversableLike)
  • What the companion methods are for (e.g. List.companion)
  • How I know what implicit objects are in scope at a given point

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(1

沦落红尘 2024-08-18 07:29:06

前言

Martin Odersky 有一个 2.8 集合演练,可能应该是你的第一个参考。它还补充了架构注释 ,这对于那些想要设计自己的系列的人来说会特别感兴趣。

这个答案的其余部分是在任何此类东西存在之前写的(事实上,在 2.8.0 本身发布之前)。

您可以找到一篇关于它的论文 Scala SID #3。对于那些对 Scala 2.7 和 2.8 之间的差异感兴趣的人来说,该领​​域的其他论文也应该很有趣。

我将选择性地引用该论文,并补充我的一些想法。还有一些由 Matthias 在 decodified.com 生成的图像,原始 SVG 文件可以在 这里

集合类/特征本身

集合的特征实际上分为三种层次结构:一种用于可变集合,一种用于不可变集合,一种不对集合做出任何假设。

并行、串行和可能并行集合之间也有区别,这是在 Scala 2.9 中引入的。我将在下一节中讨论它们。本节中描述的层次结构专门针对非并行集合

下图显示了 Scala 2.8 引入的非特定层次结构:
常规集合层次结构

显示的所有元素都是特征。在另外两个层次结构中,还有直接继承特征的类以及通过隐式转换为包装类可以被视为属于该层次结构的类。这些图表的图例可以在它们后面找到。

不可变层次结构图:
不可变集合层次结构

可变层次结构图:
可变集合层次结构

图例:

“图表图例”

这是集合层次结构的缩写 ASCII 描述,供那些看不到图像的人参考。

                    Traversable
                         |
                         |
                      Iterable
                         |
      +------------------+--------------------+
     Map                Set                  Seq
      |                  |                    |
      |             +----+----+         +-----+------+
    Sorted Map  SortedSet   BitSet   Buffer Vector LinearSeq

并行集合

当 Scala 2.9 引入并行集合时,设计目标之一是使其使用尽可能无缝。用最简单的术语来说,可以用并行集合替换非并行(串行)集合,并立即获得好处。

然而,由于在此之前所有集合都是串行的,因此许多使用它们的算法都假设并依赖于它们是串行的这一事实。提供给具有此类假设的方法的并行集合将会失败。因此,上一节中描述的所有层次结构都要求串行处理。

创建了两个新的层次结构来支持并行集合。

并行集合层次结构具有相同的特征名称,但前面带有 ParParIterableParSeqParMapParSet。请注意,没有 ParTraversable,因为任何支持并行访问的集合都能够支持更强的 ParIterable 特征。它也不具有串行层次结构中存在的一些更专门的特征。整个层次结构位于目录 scala.collection.parallel 下。

实现并行集合的类也有所不同,ParHashMapParHashSet 用于可变和不可变并行集合,还有 ParRangeParVector code> 实现 immutable.ParSeqParArray 实现 mutable.ParSeq

还存在另一个层次结构,它反映了串行和并行集合的特征,但带有前缀 GenGenTraversableGenIterableGenSeq< /code>、GenMapGenSet。这些特征是并行和串行集合的。这意味着采用 Seq 的方法无法接收并行集合,但采用 GenSeq 的方法预计可以处理串行和并行集合。

鉴于这些层次结构的构造方式,为 Scala 2.8 编写的代码与 Scala 2.9 完全兼容,并且需要串行行为。如果不重写,它就无法利用并行集合,但所需的更改非常小。

使用并行集合

任何集合都可以通过调用方法 par 转换为并行集合。同样,任何集合都可以通过调用方法 seq 转换为串行集合。

如果集合已经是所请求的类型(并行或串行),则不会发生任何转换。然而,如果对并行集合调用 seq 或对串行集合调用 par,则会生成具有所请求特征的新集合。

不要混淆 seq(将集合转换为非并行集合)和 toSeq(返回从集合的元素创建的 Seq)收藏。对并行集合调用 toSeq 将返回 ParSeq,而不是串行集合。

主要特征

虽然有许多实现类和子特征,但层次结构中有一些基本特征,每个特征都提供更多方法或更具体的保证,但减少了可以实现它们的类的数量。

在下面的小节中,我将简要描述主要特征及其背后的想法。

Trait TraversableOnce

此特征与下面描述的特征 Traversable 非常相似,但有一个限制,即您只能使用它一次。也就是说,在 TraversableOnce 上调用的任何方法都可能导致其无法使用。

此限制使得可以在集合和迭代器之间共享相同的方法。这使得使用 Iterator 但不使用特定于 Iterator 的方法的方法实际上能够使用任何集合,加上迭代器(如果重写)接受TraversableOnce

因为 TraversableOnce 统一了集合和迭代器,所以它不会出现在前面的图中,这些图中只涉及集合。

Trait Traversable

位于集合层次结构顶部的是Traversable 特征。它唯一的抽象操作是

def foreach[U](f: Elem => U)

该操作旨在遍历集合的所有元素,并将给定的操作 f 应用于每个元素
元素。这样做只是为了它的副作用;事实上 f 的任何函数结果都会被丢弃
foreach。

可遍历的对象可以是有限的或无限的。无限可遍历对象的一个​​例子是流
自然数Stream.from(0)。方法hasDefiniteSize指示集合是否可能
无限。如果 hasDefiniteSize 返回 true,则该集合肯定是有限的。如果返回 false,则
集合尚未完全阐述,因此它可能是无限的或有限的。

此类定义了可以通过 foreach 有效实现的方法(超过 40 个)。

Trait Iterable

该特征声明了一个抽象方法iterator,它返回一个迭代器,该迭代器一一生成集合的所有元素。 Iterable 中的 foreach 方法是通过 iterator 实现的。为了提高效率,Iterable 的子类通常使用直接实现来重写 foreach。

Iterable 类还为 Traversable 添加了一些不常用的方法,只有在 iterator 可用的情况下才能有效实现。它们总结如下。

xs.iterator          An iterator that yields every element in xs, in the same order as foreach traverses elements.
xs takeRight n       A collection consisting of the last n elements of xs (or, some arbitrary n elements, if no order is defined).
xs dropRight n       The rest of the collection except xs takeRight n.
xs sameElements ys   A test whether xs and ys contain the same elements in the same order

其他特征

Iterable之后,有三个继承自它的基本特征:SeqSetMap。这三个都有一个 apply 方法,并且三个都实现了 PartialFunction 特征,但是 apply 的含义在每种情况下都不同。

我相信 SeqSetMap 的含义很直观。在它们之后,这些类分解为特定的实现,这些实现提供了有关性能的特定保证,以及由此而提供的方法。还可以使用一些经过进一步细化的特征,例如 LinearSeq、IndexedSeq 和 SortedSet。

下面的列表可能会得到改进。留下评论和建议,我会修复它。

基类和特征

  • Traversable -- 基本集合类。只需使用foreach即可实现。
    • TraversableProxy -- Traversable 的代理。只需将 self 指向真正的集合即可。
    • TraversableView -- 具有一些非严格方法的 Traversable。
    • TraversableForwarder -- 将大多数方法转发到底层,除了 toStringhashCodeequals< /code>、stringPrefixnewBuilderview 以及创建同类新可迭代对象的所有调用。
    • mutable.Traversableimmutable.Traversable -- 与 Traversable 相同,但限制集合类型。
    • 存在其他特殊情况的Iterable类,例如MetaData
    • Iterable -- 可以为其创建Iterator 的集合(通过iterator)。
      • IterableProxyIterableViewmutableimmutable.Iterable
  • Iterator —— 不是 Traversable 后代的特征。定义 nexthasNext
    • CountedIterator -- 定义 countIterator,它返回到目前为止看到的元素。
    • BufferedIterator -- 定义 head,它返回下一个元素而不消耗它。
    • 存在其他特殊情况的 Iterator 类,例如 Source

Maps

  • Map - Tuple2Iterable,它还提供了根据给定键检索值(元组的第二个元素)的方法(元组的第一个元素)。还扩展了 PartialFunction
    • MapProxy -- Map代理
    • DefaultMap -- 实现一些 Map 抽象方法的特征。
    • SortedMap -- 其键已排序的 Map
      • immutable.SortMap
        • immutable.TreeMap -- 实现 immutable.SortedMap 的类。
    • immutable.Map
      • immutable.MapProxy
      • immutable.HashMap -- 通过键散列实现 immutable.Map 的类。
      • immutable.IntMap -- 实现专用于 Int 键的 immutable.Map 的类。使用基于密钥的二进制数字的树。
      • immutable.ListMap -- 通过列表实现 immutable.Map 的类。
      • immutable.LongMap -- 实现专用于 Long 键的 immutable.Map 的类。请参阅IntMap
      • 还有针对特定数量的元素进行了优化的其他类。
    • 可变.Map
      • mutable.HashMap -- 通过键散列实现 mutable.Map 的类。
      • mutable.ImmutableMapAdaptor -- 从现有 immutable.Map 实现 mutable.Map 的类。
      • mutable.LinkedHashMap -- ?
      • mutable.ListMap -- 通过列表实现 mutable.Map 的类。
      • mutable.MultiMap -- 一个类,每个键接受多个不同的值。
      • mutable.ObservableMap -- 一个mixin,当与Map混合时,通过Publisher<向观察者发布事件/code> 接口。
      • mutable.OpenHashMap -- 基于开放哈希算法的类。
      • mutable.SynchronizedMap -- 一个mixin,应与Map混合以提供具有同步方法的版本。
      • mutable.MapProxy

序列

  • Seq ——元素序列。假设有明确定义的大小和元素重复。还扩展了 PartialFunction
    • IndexedSeq -- 支持 O(1) 元素访问和 O(1) 长度计算的序列。
      • IndexedSeqView
      • immutable.PagedSeq -- IndexedSeq 的实现,其中元素由通过构造函数传递的函数按需生成。
      • immutable.IndexedSeq
        • immutable.Range -- 一个分隔的整数序列,在低端封闭,在高端开放,并且有一个步长。
          • immutable.Range.Inclusive - Range 也在高端闭合。
          • immutable.Range.ByOne -- 步长为 1 的 Range
        • immutable.NumericRange -- 更通用的 Range 版本,可与任何 Integral 配合使用。
          • immutable.NumericRange.Inclusiveimmutable.NumericRange.Exclusive
          • immutable.WrappedStringimmutable.RichString -- 包装器,可以将 String 视为 Seq[Char],同时仍然保留 String 方法。我不确定它们之间有什么区别。


      • mutable.IndexedSeq
        • mutable.GenericArray -- 基于 Seq 的类数组结构。请注意,“类”Array 是 Java 的 Array,它更多的是一种内存存储方法,而不是类。
        • mutable.ResizableArray -- 基于可调整大小数组的类使用的内部类。
        • mutable.PriorityQueuemutable.SynchronizedPriorityQueue -- 实现优先队列的类 -- 元素首先根据 Ordering 出列的队列,以及最后排队的顺序。
        • mutable.PriorityQueueProxy -- PriorityQueue 的抽象Proxy
    • LinearSeq -- 线性序列的特征,对于 isEmptyheadtail 具有高效的时间。
      • immutable.LinearSeq
        • immutable.List -- 不可变的单链接列表实现。
        • immutable.Stream -- 惰性列表。它的元素仅按需计算,但随后会被记忆(保存在内存中)。理论上可以是无限的。
      • mutable.LinearSeq
        • mutable.DoublyLinkedList -- 具有可变 prevhead (elem) 和 的列表尾部下一个)。
        • mutable.LinkedList -- 具有可变 head (elem) 和 tail (下一步)。
        • mutable.MutableList -- 内部用于实现基于可变列表的类的类。
          • mutable.Queuemutable.QueueProxy -- 针对 FIFO(先进先出)操作进行优化的数据结构。
          • mutable.QueueProxy -- mutable.Queue代理
    • SeqProxySeqViewSeqForwarder
    • immutable.Seq
      • immutable.Queue -- 实现 FIFO 优化(先进先出)数据结构的类。 可变不可变队列没有共同的超类。
      • immutable.Stack -- 实现 LIFO 优化(后进先出)数据结构的类。两个mutable immutable 堆栈没有共同的超类。
      • immutable.Vector -- ?
      • scala.xml.NodeSeq -- 扩展immutable.Seq的专用 XML 类。
      • immutable.IndexedSeq -- 如上所示。
      • immutable.LinearSeq -- 如上所示。
    • mutable.ArrayStack -- 使用数组实现 LIFO 优化数据结构的类。据说比普通堆栈快得多。
    • mutable.Stackmutable.SynchronizedStack -- 实现 LIFO 优化数据结构的类。
    • mutable.StackProxy -- mutable.StackProxy..
    • 可变的.Seq
      • mutable.Buffer -- 可以通过追加、前置或插入新成员来更改的元素序列。
        • mutable.ArrayBuffer -- mutable.Buffer 类的实现,具有用于追加、更新和随机访问操作的恒定摊销时间。它有一些专门的子类,例如NodeBuffer
        • mutable.BufferProxymutable.SynchronizedBuffer
        • mutable.ListBuffer -- 由列表支持的缓冲区。它提供恒定时间追加和前置,大多数其他操作都是线性的。
        • mutable.ObservableBuffer -- 一个mixin特征,当混合到Buffer时,通过Publisher< /code> 接口。
        • mutable.IndexedSeq -- 如上所示。
        • mutable.LinearSeq -- 如上所示。


集合

  • set - 集合是一个集合,其中最多包含任何对象之一。
    • bitset - 一组作为bitset存储的整数。
      • immutable.bitset
      • mutable.bitset
    • sortedset - 订购元素的集合。
      • 不变。SortedSet
        • immutable.treeset - 基于树的sortedset的实现。
    • setProxy - 代理 set> set
    • 不成熟的
      • immutable.hashset - 基于元素hashing的set> set>的实现。
      • immutable.listset - 基于列表的set>的实现。
      • 存在其他集合类,以提供从0到4个元素的集合的优化实现。
      • immutable.setproxy - 代理 for Inmundable SET


    • Mutable.set

      • mutable.hashset - 基于元素hashing的set> set>的实现。

      • Mutable.MmutablesEtadaptor - 从不变的 set set
      • linkedhashset - 基于列表的Set>的实现。
      • observableset - a mixin 特征,当与set set混合时,通过Publisher 接口。
      • setProxy - 代理 set> set
      • synchronizedset - a mixin 特征,当与set set混合时,通过Publisher 接口。



  • 为何存在类似类(例如traversablele),

这是为了实现最大代码重用。类似的类别完成了具有特定结构(可遍历,地图等)类的混凝土通用实现。然后,旨在进行一般消费的类,然后覆盖可以选择的选定方法。

  • (例如list.companion)

类的构建器,即知道如何以map,可以使用的方式来使用该类实例的对象,即由伴随对象中的方法创建。因此,为了构建类型X的对象,我需要从X的伴侣对象中获取该构建器。不幸的是,在Scala中,从类X到Object X中没有办法。 X,companion的每个实例中定义的方法,它返回X类的伴随对象。

尽管在普通程序中可能有某种用途,但其目标是在集合库中启用代码重用。

  • 我怎么知道在给定点的范围中有什么隐式对象,

您不应该关心这一点。它们是隐含的,因此您无需弄清楚如何使其起作用。

这些隐含物存在是为了使集合上的方法在父类中定义,但仍返回相同类型的集合。例如,map方法是在traversablelike上定义的,但是如果您在list list上使用了list list 代码>返回。

Foreword

There's a 2.8 collection walk-through by Martin Odersky which should probably be your first reference. It has been supplemented as well with architectural notes, which will be of particular interest to those who want to design their own collections.

The rest of this answer was written way before any such thing existed (in fact, before 2.8.0 itself was released).

You can find a paper about it as Scala SID #3. Other papers in that area should be interesting as well to people interested in the differences between Scala 2.7 and 2.8.

I'll quote from the paper, selectively, and complement with some thoughts of mine. There are also some images, generated by Matthias at decodified.com, and the original SVG files can be found here.

The collection classes/traits themselves

There are actually three hierarchies of traits for the collections: one for mutable collections, one for immutable collections, and one which doesn't make any assumptions about the collections.

There's also a distinction between parallel, serial and maybe-parallel collections, which was introduced with Scala 2.9. I'll talk about them in the next section. The hierarchy described in this section refers exclusively to non-parallel collections.

The following image shows the non-specific hierarchy introduced with Scala 2.8:
General collection hierarchy

All elements shown are traits. In the other two hierarchies there are also classes directly inheriting the traits as well as classes which can be viewed as belonging in that hierarchy through implicit conversion to wrapper classes. The legend for these graphs can be found after them.

Graph for immutable hierarchy:
Immutable collection hierarchy

Graph for mutable hierarchy:
Mutable collection hierarchy

Legend:

Graph legend

Here's an abbreviated ASCII depiction of the collection hierarchy, for those who can't see the images.

                    Traversable
                         |
                         |
                      Iterable
                         |
      +------------------+--------------------+
     Map                Set                  Seq
      |                  |                    |
      |             +----+----+         +-----+------+
    Sorted Map  SortedSet   BitSet   Buffer Vector LinearSeq

Parallel Collections

When Scala 2.9 introduced parallel collections, one of the design goals was to make their use as seamless as possible. In the simplest terms, one can replace a non-parallel (serial) collection with a parallel one, and instantly reap the benefits.

However, since all collections until then were serial, many algorithms using them assumed and depended on the fact that they were serial. Parallel collections fed to the methods with such assumptions would fail. For this reason, all the hierarchy described in the previous section mandates serial processing.

Two new hierarchies were created to support the parallel collections.

The parallel collections hierarchy has the same names for traits, but preceded with Par: ParIterable, ParSeq, ParMap and ParSet. Note that there is no ParTraversable, since any collection supporting parallel access is capable of supporting the stronger ParIterable trait. It doesn't have some of the more specialized traits present in the serial hierarchy either. This whole hierarchy is found under the directory scala.collection.parallel.

The classes implementing parallel collections also differ, with ParHashMap and ParHashSet for both mutable and immutable parallel collections, plus ParRange and ParVector implementing immutable.ParSeq and ParArray implementing mutable.ParSeq.

Another hierarchy also exists that mirrors the traits of serial and parallel collections, but with a prefix Gen: GenTraversable, GenIterable, GenSeq, GenMap and GenSet. These traits are parents to both parallel and serial collections. This means that a method taking a Seq cannot receive a parallel collection, but a method taking a GenSeq is expected to work with both serial and parallel collections.

Given the way these hierarchies were structured, code written for Scala 2.8 was fully compatible with Scala 2.9, and demanded serial behavior. Without being rewritten, it cannot take advantage of parallel collections, but the changes required are very small.

Using Parallel Collections

Any collection can be converted into a parallel one by calling the method par on it. Likewise, any collection can be converted into a serial one by calling the method seq on it.

If the collection was already of the type requested (parallel or serial), no conversion will take place. If one calls seq on a parallel collection or par on a serial collection, however, a new collection with the requested characteristic will be generated.

Do not confuse seq, which turns a collection into a non-parallel collection, with toSeq, which returns a Seq created from the elements of the collection. Calling toSeq on a parallel collection will return a ParSeq, not a serial collection.

The Main Traits

While there are many implementing classes and subtraits, there are some basic traits in the hierarchy, each of which providing more methods or more specific guarantees, but reducing the number of classes that could implement them.

In the following subsections, I'll give a brief description of the main traits and the idea behind them.

Trait TraversableOnce

This trait is pretty much like trait Traversable described below, but with the limitation that you can only use it once. That is, any methods called on a TraversableOnce may render it unusable.

This limitation makes it possible for the same methods to be shared between the collections and Iterator. This makes it possible for a method that works with an Iterator but not using Iterator-specific methods to actually be able to work with any collection at all, plus iterators, if rewritten to accept TraversableOnce.

Because TraversableOnce unifies collections and iterators, it does not appear in the previous graphs, which concern themselves only with collections.

Trait Traversable

At the top of the collection hierarchy is trait Traversable. Its only abstract operation is

def foreach[U](f: Elem => U)

The operation is meant to traverse all elements of the collection, and apply the given operation f to each
element. The application is done for its side effect only; in fact any function result of f is discarded by
foreach.

Traversible objects can be finite or infinite. An example of an infinite traversable object is the stream
of natural numbers Stream.from(0). The method hasDefiniteSize indicates whether a collection is possibly
infinite. If hasDefiniteSize returns true, the collection is certainly finite. If it returns false, the
collection has not been not fully elaborated yet, so it might be infinite or finite.

This class defines methods which can be efficiently implemented in terms of foreach (over 40 of them).

Trait Iterable

This trait declares an abstract method iterator that returns an iterator that yields all the collection’s elements one by one. The foreach method in Iterable is implemented in terms of iterator. Subclasses of Iterable often override foreach with a direct implementation for efficiency.

Class Iterable also adds some less-often used methods to Traversable, which can be implemented efficiently only if an iterator is available. They are summarized below.

xs.iterator          An iterator that yields every element in xs, in the same order as foreach traverses elements.
xs takeRight n       A collection consisting of the last n elements of xs (or, some arbitrary n elements, if no order is defined).
xs dropRight n       The rest of the collection except xs takeRight n.
xs sameElements ys   A test whether xs and ys contain the same elements in the same order

Other Traits

After Iterable there come three base traits which inherit from it: Seq, Set, and Map. All three have an apply method and all three implement the PartialFunction trait, but the meaning of apply is different in each case.

I trust the meaning of Seq, Set and Map is intuitive. After them, the classes break up in specific implementations that offer particular guarantees with regards to performance, and the methods it makes available as a result of it. Also available are some traits with further refinements, such as LinearSeq, IndexedSeq and SortedSet.

The listing below may be improved. Leave a comment with suggestions and I'll fix it.

Base Classes and Traits

  • Traversable -- Basic collection class. Can be implemented just with foreach.
    • TraversableProxy -- Proxy for a Traversable. Just point self to the real collection.
    • TraversableView -- A Traversable with some non-strict methods.
    • TraversableForwarder -- Forwards most methods to underlying, except toString, hashCode, equals, stringPrefix, newBuilder, view and all calls creating a new iterable object of the same kind.
    • mutable.Traversable and immutable.Traversable -- same thing as Traversable, but restricting the collection type.
    • Other special-cases Iterable classes, such as MetaData, exists.
    • Iterable -- A collection for which an Iterator can be created (through iterator).
      • IterableProxy, IterableView, mutable and immutable.Iterable.
  • Iterator -- A trait which is not descendant of Traversable. Define next and hasNext.
    • CountedIterator -- An Iterator defining count, which returns the elements seen so far.
    • BufferedIterator -- Defines head, which returns the next element without consuming it.
    • Other special-cases Iterator classes, such as Source, exists.

The Maps

  • Map -- An Iterable of Tuple2, which also provides methods for retrieving a value (the second element of the tuple) given a key (the first element of the tuple). Extends PartialFunction as well.
    • MapProxy -- A Proxy for a Map.
    • DefaultMap -- A trait implementing some of Map's abstract methods.
    • SortedMap -- A Map whose keys are sorted.
      • immutable.SortMap
        • immutable.TreeMap -- A class implementing immutable.SortedMap.
    • immutable.Map
      • immutable.MapProxy
      • immutable.HashMap -- A class implementing immutable.Map through key hashing.
      • immutable.IntMap -- A class implementing immutable.Map specialized for Int keys. Uses a tree based on the binary digits of the keys.
      • immutable.ListMap -- A class implementing immutable.Map through lists.
      • immutable.LongMap -- A class implementing immutable.Map specialized for Long keys. See IntMap.
      • There are additional classes optimized for an specific number of elements.
    • mutable.Map
      • mutable.HashMap -- A class implementing mutable.Map through key hashing.
      • mutable.ImmutableMapAdaptor -- A class implementing a mutable.Map from an existing immutable.Map.
      • mutable.LinkedHashMap -- ?
      • mutable.ListMap -- A class implementing mutable.Map through lists.
      • mutable.MultiMap -- A class accepting more than one distinct value for each key.
      • mutable.ObservableMap -- A mixin which, when mixed with a Map, publishes events to observers through a Publisher interface.
      • mutable.OpenHashMap -- A class based on an open hashing algorithm.
      • mutable.SynchronizedMap -- A mixin which should be mixed with a Map to provide a version of it with synchronized methods.
      • mutable.MapProxy.

The Sequences

  • Seq -- A sequence of elements. One assumes a well-defined size and element repetition. Extends PartialFunction as well.
    • IndexedSeq -- Sequences that support O(1) element access and O(1) length computation.
      • IndexedSeqView
      • immutable.PagedSeq -- An implementation of IndexedSeq where the elements are produced on-demand by a function passed through the constructor.
      • immutable.IndexedSeq
        • immutable.Range -- A delimited sequence of integers, closed on the lower end, open on the high end, and with a step.
          • immutable.Range.Inclusive -- A Range closed on the high end as well.
          • immutable.Range.ByOne -- A Range whose step is 1.
        • immutable.NumericRange -- A more generic version of Range which works with any Integral.
          • immutable.NumericRange.Inclusive, immutable.NumericRange.Exclusive.
          • immutable.WrappedString, immutable.RichString -- Wrappers which enables seeing a String as a Seq[Char], while still preserving the String methods. I'm not sure what the difference between them is.
      • mutable.IndexedSeq
        • mutable.GenericArray -- An Seq-based array-like structure. Note that the "class" Array is Java's Array, which is more of a memory storage method than a class.
        • mutable.ResizableArray -- Internal class used by classes based on resizable arrays.
        • mutable.PriorityQueue, mutable.SynchronizedPriorityQueue -- Classes implementing prioritized queues -- queues where the elements are dequeued according to an Ordering first, and order of queueing last.
        • mutable.PriorityQueueProxy -- an abstract Proxy for a PriorityQueue.
    • LinearSeq -- A trait for linear sequences, with efficient time for isEmpty, head and tail.
      • immutable.LinearSeq
        • immutable.List -- An immutable, singlely-linked, list implementation.
        • immutable.Stream -- A lazy-list. Its elements are only computed on-demand, but memoized (kept in memory) afterwards. It can be theoretically infinite.
      • mutable.LinearSeq
        • mutable.DoublyLinkedList -- A list with mutable prev, head (elem) and tail (next).
        • mutable.LinkedList -- A list with mutable head (elem) and tail (next).
        • mutable.MutableList -- A class used internally to implement classes based on mutable lists.
          • mutable.Queue, mutable.QueueProxy -- A data structure optimized for FIFO (First-In, First-Out) operations.
          • mutable.QueueProxy -- A Proxy for a mutable.Queue.
    • SeqProxy, SeqView, SeqForwarder
    • immutable.Seq
      • immutable.Queue -- A class implementing a FIFO-optimized (First-In, First-Out) data structure. There is no common superclass of both mutable and immutable queues.
      • immutable.Stack -- A class implementing a LIFO-optimized (Last-In, First-Out) data structure. There is no common superclass of both mutable immutable stacks.
      • immutable.Vector -- ?
      • scala.xml.NodeSeq -- A specialized XML class which extends immutable.Seq.
      • immutable.IndexedSeq -- As seen above.
      • immutable.LinearSeq -- As seen above.
    • mutable.ArrayStack -- A class implementing a LIFO-optimized data structure using arrays. Supposedly significantly faster than a normal stack.
    • mutable.Stack, mutable.SynchronizedStack -- Classes implementing a LIFO-optimized data structure.
    • mutable.StackProxy -- A Proxy for a mutable.Stack..
    • mutable.Seq
      • mutable.Buffer -- Sequence of elements which can be changed by appending, prepending or inserting new members.
        • mutable.ArrayBuffer -- An implementation of the mutable.Buffer class, with constant amortized time for the append, update and random access operations. It has some specialized subclasses, such as NodeBuffer.
        • mutable.BufferProxy, mutable.SynchronizedBuffer.
        • mutable.ListBuffer -- A buffer backed by a list. It provides constant time append and prepend, with most other operations being linear.
        • mutable.ObservableBuffer -- A mixin trait which, when mixed to a Buffer, provides notification events through a Publisher interfaces.
        • mutable.IndexedSeq -- As seen above.
        • mutable.LinearSeq -- As seen above.

The Sets

  • Set -- A set is a collection that includes at most one of any object.
    • BitSet -- A set of integers stored as a bitset.
      • immutable.BitSet
      • mutable.BitSet
    • SortedSet -- A set whose elements are ordered.
      • immutable.SortedSet
        • immutable.TreeSet -- An implementation of a SortedSet based on a tree.
    • SetProxy -- A Proxy for a Set.
    • immutable.Set
      • immutable.HashSet -- An implementation of Set based on element hashing.
      • immutable.ListSet -- An implementation of Set based on lists.
      • Additional set classes exists to provide optimized implementions for sets from 0 to 4 elements.
      • immutable.SetProxy -- A Proxy for an immutable Set.
    • mutable.Set
      • mutable.HashSet -- An implementation of Set based on element hashing.
      • mutable.ImmutableSetAdaptor -- A class implementing a mutable Set from an immutable Set.
      • LinkedHashSet -- An implementation of Set based on lists.
      • ObservableSet -- A mixin trait which, when mixed with a Set, provides notification events through a Publisher interface.
      • SetProxy -- A Proxy for a Set.
      • SynchronizedSet -- A mixin trait which, when mixed with a Set, provides notification events through a Publisher interface.

  • Why the Like classes exist (e.g. TraversableLike)

This was done to achieve maximum code reuse. The concrete generic implementation for classes with a certain structure (a traversable, a map, etc) is done in the Like classes. The classes intended for general consumption, then, override selected methods that can be optmized.

  • What the companion methods are for (e.g. List.companion)

The builder for the classes, ie, the object which knows how to create instances of that class in a way that can be used by methods like map, is created by a method in the companion object. So, in order to build an object of type X, I need to get that builder from the companion object of X. Unfortunately, there is no way, in Scala, to get from class X to object X. Because of that, there is a method defined in each instance of X, companion, which returns the companion object of class X.

While there might be some use for such method in normal programs, its target is enabling code reuse in the collection library.

  • How I know what implicit objects are in scope at a given point

You aren't supposed to care about that. They are implicit precisely so that you don't need to figure out how to make it work.

These implicits exists to enable the methods on the collections to be defined on parent classes but still return a collection of the same type. For example, the map method is defined on TraversableLike, but if you used on a List you'll get a List back.

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文