迭代计算任意数量的集合的笛卡尔积

发布于 2024-08-10 21:32:18 字数 1054 浏览 6 评论 0原文

我想计算 Java 中任意数量的非空集合的笛卡尔积。

我已经编写了迭代代码......

public static <T> List<Set<T>> cartesianProduct(List<Set<T>> list) {
    List<Iterator<T>> iterators = new ArrayList<Iterator<T>>(list.size());
    List<T> elements = new ArrayList<T>(list.size());
    List<Set<T>> toRet = new ArrayList<Set<T>>();
    for (int i = 0; i < list.size(); i++) {
        iterators.add(list.get(i).iterator());
        elements.add(iterators.get(i).next());
    }
    for (int j = 1; j >= 0;) {
        toRet.add(Sets.newHashSet(elements));
        for (j = iterators.size()-1; j >= 0 && !iterators.get(j).hasNext(); j--) {
            iterators.set(j, list.get(j).iterator());
            elements.set(j, iterators.get(j).next());
        }
        elements.set(Math.abs(j), iterators.get(Math.abs(j)).next());
    }
    return toRet;
}

但我发现它相当不优雅。 有人有更好的、仍然迭代的解决方案吗?使用某种奇妙的类似函数式方法的解决方案? 否则...有关如何改进它的建议?错误?

I want to compute the cartesian product of an arbitrary number of nonempty sets in Java.

I've wrote that iterative code...

public static <T> List<Set<T>> cartesianProduct(List<Set<T>> list) {
    List<Iterator<T>> iterators = new ArrayList<Iterator<T>>(list.size());
    List<T> elements = new ArrayList<T>(list.size());
    List<Set<T>> toRet = new ArrayList<Set<T>>();
    for (int i = 0; i < list.size(); i++) {
        iterators.add(list.get(i).iterator());
        elements.add(iterators.get(i).next());
    }
    for (int j = 1; j >= 0;) {
        toRet.add(Sets.newHashSet(elements));
        for (j = iterators.size()-1; j >= 0 && !iterators.get(j).hasNext(); j--) {
            iterators.set(j, list.get(j).iterator());
            elements.set(j, iterators.get(j).next());
        }
        elements.set(Math.abs(j), iterators.get(Math.abs(j)).next());
    }
    return toRet;
}

...but I found it rather inelegant.
Someone has a better, still iterative solution? A solution that uses some wonderful functional-like approach?
Otherwise... suggestion about how to improve it? Errors?

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(10

弃爱 2024-08-17 21:32:18

我编写了一个解决方案,不需要您在内存中填充大量集合。不幸的是,所需的代码长达数百行。您可能需要等到它出现在 Guava 项目中(https://github.com/google/guava),我希望能在今年年底实现。对不起。 :(

请注意,如果笛卡尔生成的集数是编译时已知的固定数字,您可能不需要这样的实用程序 - 您可以只使用该数量的嵌套 for 循环。

编辑: 代码现已发布

Sets.cartesianProduct()

我想您会对它感到非常满意。它只会根据您的要求创建单独的列表它们;不会用所有 MxNxPxQ 填充内存。

如果您想检查源代码,则为 此处

尽情享受吧!

I've written a solution that doesn't require you to fill up a large collection in memory. Unfortunately, the code required is hundreds of lines long. You may have to wait until it appears in the Guava project (https://github.com/google/guava), which I hope will be by the end of the year. Sorry. :(

Note that you may not need such a utility if the number of sets you're cartesian-producting is a fixed number known at compile time -- you could just use that number of nested for loops.

EDIT: the code is released now.

Sets.cartesianProduct()

I think you'll be very happy with it. It only creates the individual lists as you ask for them; doesn't fill up memory with all MxNxPxQ of them.

If you want to inspect the source, it's here.

Enjoy!

聆听风音 2024-08-17 21:32:18

使用 Google Guava 19 和 Java 8 非常简单:

假设您有要关联的所有数组的 List...

public static void main(String[] args) {
  List<String[]> elements = Arrays.asList(
    new String[]{"John", "Mary"}, 
    new String[]{"Eats", "Works", "Plays"},
    new String[]{"Food", "Computer", "Guitar"}
  );

  // Create a list of immutableLists of strings
  List<ImmutableList<String>> immutableElements = makeListofImmutable(elements);

  // Use Guava's Lists.cartesianProduct, since Guava 19
  List<List<String>> cartesianProduct = Lists.cartesianProduct(immutableElements);

  System.out.println(cartesianProduct);
}

制作不可变列表的方法如下:

/**
 * @param values the list of all profiles provided by the client in matrix.json
 * @return the list of ImmutableList to compute the Cartesian product of values
 */
private static List<ImmutableList<String>> makeListofImmutable(List<String[]> values) {
  List<ImmutableList<String>> converted = new LinkedList<>();
  values.forEach(array -> {
    converted.add(ImmutableList.copyOf(array));
  });
  return converted;
}

输出如下:

[
  [John, Eats, Food], [John, Eats, Computer], [John, Eats, Guitar],
  [John, Works, Food], [John, Works, Computer], [John, Works, Guitar], 
  [John, Plays, Food], [John, Plays, Computer], [John, Plays, Guitar],
  [Mary, Eats, Food], [Mary, Eats, Computer], [Mary, Eats, Guitar],
  [Mary, Works, Food], [Mary, Works, Computer], [Mary, Works, Guitar],
  [Mary, Plays, Food], [Mary, Plays, Computer], [Mary, Plays, Guitar]
]

Using Google Guava 19 and Java 8 is very simple:

Say you have the List of all arrays you want to associate...

public static void main(String[] args) {
  List<String[]> elements = Arrays.asList(
    new String[]{"John", "Mary"}, 
    new String[]{"Eats", "Works", "Plays"},
    new String[]{"Food", "Computer", "Guitar"}
  );

  // Create a list of immutableLists of strings
  List<ImmutableList<String>> immutableElements = makeListofImmutable(elements);

  // Use Guava's Lists.cartesianProduct, since Guava 19
  List<List<String>> cartesianProduct = Lists.cartesianProduct(immutableElements);

  System.out.println(cartesianProduct);
}

The method to make the list of immutable lists is as follows:

/**
 * @param values the list of all profiles provided by the client in matrix.json
 * @return the list of ImmutableList to compute the Cartesian product of values
 */
private static List<ImmutableList<String>> makeListofImmutable(List<String[]> values) {
  List<ImmutableList<String>> converted = new LinkedList<>();
  values.forEach(array -> {
    converted.add(ImmutableList.copyOf(array));
  });
  return converted;
}

The output is as follows:

[
  [John, Eats, Food], [John, Eats, Computer], [John, Eats, Guitar],
  [John, Works, Food], [John, Works, Computer], [John, Works, Guitar], 
  [John, Plays, Food], [John, Plays, Computer], [John, Plays, Guitar],
  [Mary, Eats, Food], [Mary, Eats, Computer], [Mary, Eats, Guitar],
  [Mary, Works, Food], [Mary, Works, Computer], [Mary, Works, Guitar],
  [Mary, Plays, Food], [Mary, Plays, Computer], [Mary, Plays, Guitar]
]
青衫儰鉨ミ守葔 2024-08-17 21:32:18

这是我编写的一个迭代的、惰性的实现。该界面与 Google 的 Sets.cartesianProduct 非常相似,但它更灵活一些:它处理 Iterables 而不是 Sets。此代码及其单元测试位于 https://gist.github.com/1911614

/* Copyright 2012 LinkedIn Corp.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

       http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License.
 */

import com.google.common.base.Function;
import com.google.common.collect.Iterables;
import java.lang.reflect.Array;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.Iterator;
import java.util.List;
import java.util.NoSuchElementException;

/**
 * Implements the Cartesian product of ordered collections.
 * 
 * @author <a href="mailto:[email protected]">John Kristian</a>
 */
public class Cartesian {
  /**
   * Generate the <a href="http://en.wikipedia.org/wiki/Cartesian_product">Cartesian
   * product</a> of the given axes. For axes [[a1, a2 ...], [b1, b2 ...], [c1, c2 ...]
   * ...] the product is [[a1, b1, c1 ...] ... [a1, b1, c2 ...] ... [a1, b2, c1 ...] ...
   * [aN, bN, cN ...]]. In other words, the results are generated in same order as these
   * nested loops:
   * 
   * <pre>
   * for (T a : [a1, a2 ...])
   *   for (T b : [b1, b2 ...])
   *     for (T c : [c1, c2 ...])
   *       ...
   *         result = new T[]{ a, b, c ... };
   * </pre>
   * 
   * Each result is a new array of T, whose elements refer to the elements of the axes. If
   * you prefer a List, you can call asLists(product(axes)).
   * <p>
   * Don't change the axes while iterating over their product, as a rule. Changes to an
   * axis can affect the product or cause iteration to fail (which is usually bad). To
   * prevent this, you can pass clones of your axes to this method.
   * <p>
   * The implementation is lazy. This method iterates over the axes, and returns an
   * Iterable that contains a reference to each axis. Iterating over the product causes
   * iteration over each axis. Methods of each axis are called as late as practical.
   */
  public static <T> Iterable<T[]> product(Class<T> resultType,
                                          Iterable<? extends Iterable<? extends T>> axes) {
    return new Product<T>(resultType, newArray(Iterable.class, axes));
  }

  /** Works like product(resultType, Arrays.asList(axes)), but slightly more efficient. */
  public static <T> Iterable<T[]> product(Class<T> resultType, Iterable<? extends T>... axes) {
    return new Product<T>(resultType, axes.clone());
  }

  /**
   * Wrap the given arrays in fixed-size lists. Changes to the lists write through to the
   * arrays.
   */
  public static <T> Iterable<List<T>> asLists(Iterable<? extends T[]> arrays) {
    return Iterables.transform(arrays, new AsList<T>());
  }

  /**
   * Arrays.asList, represented as a Function (as used in Google collections).
   */
  public static class AsList<T> implements Function<T[], List<T>> {
    @Override
    public List<T> apply(T[] array) {
      return Arrays.asList(array);
    }
  }

  /** Create a generic array containing references to the given objects. */
  private static <T> T[] newArray(Class<? super T> elementType, Iterable<? extends T> from) {
    List<T> list = new ArrayList<T>();
    for (T f : from)
      list.add(f);
    return list.toArray(newArray(elementType, list.size()));
  }

  /** Create a generic array. */
  @SuppressWarnings("unchecked")
  private static <T> T[] newArray(Class<? super T> elementType, int length) {
    return (T[]) Array.newInstance(elementType, length);
  }

  private static class Product<T> implements Iterable<T[]> {
    private final Class<T> _resultType;
    private final Iterable<? extends T>[] _axes;

    /** Caution: the given array of axes is contained by reference, not cloned. */
    Product(Class<T> resultType, Iterable<? extends T>[] axes) {
      _resultType = resultType;
      _axes = axes;
    }

    @Override
    public Iterator<T[]> iterator() {
      if (_axes.length <= 0) // an edge case
        return Collections.singleton(newArray(_resultType, 0)).iterator();
      return new ProductIterator<T>(_resultType, _axes);
    }

    @Override
    public String toString() {
      return "Cartesian.product(" + Arrays.toString(_axes) + ")";
    }

    private static class ProductIterator<T> implements Iterator<T[]> {
      private final Iterable<? extends T>[] _axes;
      private final Iterator<? extends T>[] _iterators; // one per axis
      private final T[] _result; // a copy of the last result
      /**
       * The minimum index such that this.next() will return an array that contains
       * _iterators[index].next(). There are some special sentinel values: NEW means this
       * is a freshly constructed iterator, DONE means all combinations have been
       * exhausted (so this.hasNext() == false) and _iterators.length means the value is
       * unknown (to be determined by this.hasNext).
       */
      private int _nextIndex = NEW;
      private static final int NEW = -2;
      private static final int DONE = -1;

      /** Caution: the given array of axes is contained by reference, not cloned. */
      ProductIterator(Class<T> resultType, Iterable<? extends T>[] axes) {
        _axes = axes;
        _iterators = Cartesian.<Iterator<? extends T>> newArray(Iterator.class, _axes.length);
        for (int a = 0; a < _axes.length; ++a) {
          _iterators[a] = axes[a].iterator();
        }
        _result = newArray(resultType, _iterators.length);
      }

      private void close() {
        _nextIndex = DONE;
        // Release references, to encourage garbage collection:
        Arrays.fill(_iterators, null);
        Arrays.fill(_result, null);
      }

      @Override
      public boolean hasNext() {
        if (_nextIndex == NEW) { // This is the first call to hasNext().
          _nextIndex = 0; // start here
          for (Iterator<? extends T> iter : _iterators) {
            if (!iter.hasNext()) {
              close(); // no combinations
              break;
            }
          }
        } else if (_nextIndex >= _iterators.length) {
          // This is the first call to hasNext() after next() returned a result.
          // Determine the _nextIndex to be used by next():
          for (_nextIndex = _iterators.length - 1; _nextIndex >= 0; --_nextIndex) {
            Iterator<? extends T> iter = _iterators[_nextIndex];
            if (iter.hasNext()) {
              break; // start here
            }
            if (_nextIndex == 0) { // All combinations have been generated.
              close();
              break;
            }
            // Repeat this axis, with the next value from the previous axis.
            iter = _axes[_nextIndex].iterator();
            _iterators[_nextIndex] = iter;
            if (!iter.hasNext()) { // Oops; this axis can't be repeated.
              close(); // no more combinations
              break;
            }
          }
        }
        return _nextIndex >= 0;
      }

      @Override
      public T[] next() {
        if (!hasNext())
          throw new NoSuchElementException("!hasNext");
        for (; _nextIndex < _iterators.length; ++_nextIndex) {
          _result[_nextIndex] = _iterators[_nextIndex].next();
        }
        return _result.clone();
      }

      @Override
      public void remove() {
        for (Iterator<? extends T> iter : _iterators) {
          iter.remove();
        }
      }

      @Override
      public String toString() {
        return "Cartesian.product(" + Arrays.toString(_axes) + ").iterator()";
      }
    }
  }
}

Here's an iterative, lazy implementation I wrote. The interface is very similar to Google's Sets.cartesianProduct, but it's a bit more flexible: it deals in Iterables instead of Sets. This code and its unit tests are at https://gist.github.com/1911614.

/* Copyright 2012 LinkedIn Corp.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

       http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License.
 */

import com.google.common.base.Function;
import com.google.common.collect.Iterables;
import java.lang.reflect.Array;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.Iterator;
import java.util.List;
import java.util.NoSuchElementException;

/**
 * Implements the Cartesian product of ordered collections.
 * 
 * @author <a href="mailto:[email protected]">John Kristian</a>
 */
public class Cartesian {
  /**
   * Generate the <a href="http://en.wikipedia.org/wiki/Cartesian_product">Cartesian
   * product</a> of the given axes. For axes [[a1, a2 ...], [b1, b2 ...], [c1, c2 ...]
   * ...] the product is [[a1, b1, c1 ...] ... [a1, b1, c2 ...] ... [a1, b2, c1 ...] ...
   * [aN, bN, cN ...]]. In other words, the results are generated in same order as these
   * nested loops:
   * 
   * <pre>
   * for (T a : [a1, a2 ...])
   *   for (T b : [b1, b2 ...])
   *     for (T c : [c1, c2 ...])
   *       ...
   *         result = new T[]{ a, b, c ... };
   * </pre>
   * 
   * Each result is a new array of T, whose elements refer to the elements of the axes. If
   * you prefer a List, you can call asLists(product(axes)).
   * <p>
   * Don't change the axes while iterating over their product, as a rule. Changes to an
   * axis can affect the product or cause iteration to fail (which is usually bad). To
   * prevent this, you can pass clones of your axes to this method.
   * <p>
   * The implementation is lazy. This method iterates over the axes, and returns an
   * Iterable that contains a reference to each axis. Iterating over the product causes
   * iteration over each axis. Methods of each axis are called as late as practical.
   */
  public static <T> Iterable<T[]> product(Class<T> resultType,
                                          Iterable<? extends Iterable<? extends T>> axes) {
    return new Product<T>(resultType, newArray(Iterable.class, axes));
  }

  /** Works like product(resultType, Arrays.asList(axes)), but slightly more efficient. */
  public static <T> Iterable<T[]> product(Class<T> resultType, Iterable<? extends T>... axes) {
    return new Product<T>(resultType, axes.clone());
  }

  /**
   * Wrap the given arrays in fixed-size lists. Changes to the lists write through to the
   * arrays.
   */
  public static <T> Iterable<List<T>> asLists(Iterable<? extends T[]> arrays) {
    return Iterables.transform(arrays, new AsList<T>());
  }

  /**
   * Arrays.asList, represented as a Function (as used in Google collections).
   */
  public static class AsList<T> implements Function<T[], List<T>> {
    @Override
    public List<T> apply(T[] array) {
      return Arrays.asList(array);
    }
  }

  /** Create a generic array containing references to the given objects. */
  private static <T> T[] newArray(Class<? super T> elementType, Iterable<? extends T> from) {
    List<T> list = new ArrayList<T>();
    for (T f : from)
      list.add(f);
    return list.toArray(newArray(elementType, list.size()));
  }

  /** Create a generic array. */
  @SuppressWarnings("unchecked")
  private static <T> T[] newArray(Class<? super T> elementType, int length) {
    return (T[]) Array.newInstance(elementType, length);
  }

  private static class Product<T> implements Iterable<T[]> {
    private final Class<T> _resultType;
    private final Iterable<? extends T>[] _axes;

    /** Caution: the given array of axes is contained by reference, not cloned. */
    Product(Class<T> resultType, Iterable<? extends T>[] axes) {
      _resultType = resultType;
      _axes = axes;
    }

    @Override
    public Iterator<T[]> iterator() {
      if (_axes.length <= 0) // an edge case
        return Collections.singleton(newArray(_resultType, 0)).iterator();
      return new ProductIterator<T>(_resultType, _axes);
    }

    @Override
    public String toString() {
      return "Cartesian.product(" + Arrays.toString(_axes) + ")";
    }

    private static class ProductIterator<T> implements Iterator<T[]> {
      private final Iterable<? extends T>[] _axes;
      private final Iterator<? extends T>[] _iterators; // one per axis
      private final T[] _result; // a copy of the last result
      /**
       * The minimum index such that this.next() will return an array that contains
       * _iterators[index].next(). There are some special sentinel values: NEW means this
       * is a freshly constructed iterator, DONE means all combinations have been
       * exhausted (so this.hasNext() == false) and _iterators.length means the value is
       * unknown (to be determined by this.hasNext).
       */
      private int _nextIndex = NEW;
      private static final int NEW = -2;
      private static final int DONE = -1;

      /** Caution: the given array of axes is contained by reference, not cloned. */
      ProductIterator(Class<T> resultType, Iterable<? extends T>[] axes) {
        _axes = axes;
        _iterators = Cartesian.<Iterator<? extends T>> newArray(Iterator.class, _axes.length);
        for (int a = 0; a < _axes.length; ++a) {
          _iterators[a] = axes[a].iterator();
        }
        _result = newArray(resultType, _iterators.length);
      }

      private void close() {
        _nextIndex = DONE;
        // Release references, to encourage garbage collection:
        Arrays.fill(_iterators, null);
        Arrays.fill(_result, null);
      }

      @Override
      public boolean hasNext() {
        if (_nextIndex == NEW) { // This is the first call to hasNext().
          _nextIndex = 0; // start here
          for (Iterator<? extends T> iter : _iterators) {
            if (!iter.hasNext()) {
              close(); // no combinations
              break;
            }
          }
        } else if (_nextIndex >= _iterators.length) {
          // This is the first call to hasNext() after next() returned a result.
          // Determine the _nextIndex to be used by next():
          for (_nextIndex = _iterators.length - 1; _nextIndex >= 0; --_nextIndex) {
            Iterator<? extends T> iter = _iterators[_nextIndex];
            if (iter.hasNext()) {
              break; // start here
            }
            if (_nextIndex == 0) { // All combinations have been generated.
              close();
              break;
            }
            // Repeat this axis, with the next value from the previous axis.
            iter = _axes[_nextIndex].iterator();
            _iterators[_nextIndex] = iter;
            if (!iter.hasNext()) { // Oops; this axis can't be repeated.
              close(); // no more combinations
              break;
            }
          }
        }
        return _nextIndex >= 0;
      }

      @Override
      public T[] next() {
        if (!hasNext())
          throw new NoSuchElementException("!hasNext");
        for (; _nextIndex < _iterators.length; ++_nextIndex) {
          _result[_nextIndex] = _iterators[_nextIndex].next();
        }
        return _result.clone();
      }

      @Override
      public void remove() {
        for (Iterator<? extends T> iter : _iterators) {
          iter.remove();
        }
      }

      @Override
      public String toString() {
        return "Cartesian.product(" + Arrays.toString(_axes) + ").iterator()";
      }
    }
  }
}
物价感观 2024-08-17 21:32:18

基于索引的解决方案

使用索引是一种简单的替代方案,它速度快、内存效率高,并且可以处理任意数量的集合。实现 Iterable 可以在 for-each 循环中轻松使用。有关使用示例,请参阅#main 方法。

public class CartesianProduct implements Iterable<int[]>, Iterator<int[]> {
    private final int[] _lengths;
    private final int[] _indices;
    private boolean _hasNext = true;

    public CartesianProduct(int[] lengths) {
        _lengths = lengths;
        _indices = new int[lengths.length];
    }

    public boolean hasNext() {
        return _hasNext;
    }

    public int[] next() {
        int[] result = Arrays.copyOf(_indices, _indices.length);
        for (int i = _indices.length - 1; i >= 0; i--) {
            if (_indices[i] == _lengths[i] - 1) {
                _indices[i] = 0;
                if (i == 0) {
                    _hasNext = false;
                }
            } else {
                _indices[i]++;
                break;
            }
        }
        return result;
    }

    public Iterator<int[]> iterator() {
        return this;
    }

    public void remove() {
        throw new UnsupportedOperationException();
    }

    /**
     * Usage example. Prints out
     *
     * <pre>
     * [0, 0, 0] a, NANOSECONDS, 1
     * [0, 0, 1] a, NANOSECONDS, 2
     * [0, 0, 2] a, NANOSECONDS, 3
     * [0, 0, 3] a, NANOSECONDS, 4
     * [0, 1, 0] a, MICROSECONDS, 1
     * [0, 1, 1] a, MICROSECONDS, 2
     * [0, 1, 2] a, MICROSECONDS, 3
     * [0, 1, 3] a, MICROSECONDS, 4
     * [0, 2, 0] a, MILLISECONDS, 1
     * [0, 2, 1] a, MILLISECONDS, 2
     * [0, 2, 2] a, MILLISECONDS, 3
     * [0, 2, 3] a, MILLISECONDS, 4
     * [0, 3, 0] a, SECONDS, 1
     * [0, 3, 1] a, SECONDS, 2
     * [0, 3, 2] a, SECONDS, 3
     * [0, 3, 3] a, SECONDS, 4
     * [0, 4, 0] a, MINUTES, 1
     * [0, 4, 1] a, MINUTES, 2
     * ...
     * </pre>
     */
    public static void main(String[] args) {
        String[] list1 = {"a", "b", "c",};
        TimeUnit[] list2 = TimeUnit.values();
        int[] list3 = new int[]{1, 2, 3, 4};

        int[] lengths = new int[]{list1.length, list2.length, list3.length};
        for (int[] indices : new CartesianProduct(lengths)) {
            System.out.println(Arrays.toString(indices) //
                    + " " + list1[indices[0]] //
                    + ", " + list2[indices[1]] //
                    + ", " + list3[indices[2]]);
        }
    }
}

Index-based solution

Working with the indices is a simple alternative that is fast and memory-efficient and can handle any number of sets. Implementing Iterable allows easy use in a for-each loop. See the #main method for a usage example.

public class CartesianProduct implements Iterable<int[]>, Iterator<int[]> {
    private final int[] _lengths;
    private final int[] _indices;
    private boolean _hasNext = true;

    public CartesianProduct(int[] lengths) {
        _lengths = lengths;
        _indices = new int[lengths.length];
    }

    public boolean hasNext() {
        return _hasNext;
    }

    public int[] next() {
        int[] result = Arrays.copyOf(_indices, _indices.length);
        for (int i = _indices.length - 1; i >= 0; i--) {
            if (_indices[i] == _lengths[i] - 1) {
                _indices[i] = 0;
                if (i == 0) {
                    _hasNext = false;
                }
            } else {
                _indices[i]++;
                break;
            }
        }
        return result;
    }

    public Iterator<int[]> iterator() {
        return this;
    }

    public void remove() {
        throw new UnsupportedOperationException();
    }

    /**
     * Usage example. Prints out
     *
     * <pre>
     * [0, 0, 0] a, NANOSECONDS, 1
     * [0, 0, 1] a, NANOSECONDS, 2
     * [0, 0, 2] a, NANOSECONDS, 3
     * [0, 0, 3] a, NANOSECONDS, 4
     * [0, 1, 0] a, MICROSECONDS, 1
     * [0, 1, 1] a, MICROSECONDS, 2
     * [0, 1, 2] a, MICROSECONDS, 3
     * [0, 1, 3] a, MICROSECONDS, 4
     * [0, 2, 0] a, MILLISECONDS, 1
     * [0, 2, 1] a, MILLISECONDS, 2
     * [0, 2, 2] a, MILLISECONDS, 3
     * [0, 2, 3] a, MILLISECONDS, 4
     * [0, 3, 0] a, SECONDS, 1
     * [0, 3, 1] a, SECONDS, 2
     * [0, 3, 2] a, SECONDS, 3
     * [0, 3, 3] a, SECONDS, 4
     * [0, 4, 0] a, MINUTES, 1
     * [0, 4, 1] a, MINUTES, 2
     * ...
     * </pre>
     */
    public static void main(String[] args) {
        String[] list1 = {"a", "b", "c",};
        TimeUnit[] list2 = TimeUnit.values();
        int[] list3 = new int[]{1, 2, 3, 4};

        int[] lengths = new int[]{list1.length, list2.length, list3.length};
        for (int[] indices : new CartesianProduct(lengths)) {
            System.out.println(Arrays.toString(indices) //
                    + " " + list1[indices[0]] //
                    + ", " + list2[indices[1]] //
                    + ", " + list3[indices[2]]);
        }
    }
}
被翻牌 2024-08-17 21:32:18

以下答案使用迭代而不是递归。它使用与我之前的答案相同的 Tuple 类。

这是一个单独的答案,因为恕我直言,两者都是有效的、不同的方法。

这是新的主类:

public class Example {
    public static <T> List<Tuple<T>> cartesianProduct(List<Set<T>> sets) {
        List<Tuple<T>> tuples = new ArrayList<Tuple<T>>();
        for (Set<T> set : sets) {
            if (tuples.isEmpty()) {
                for (T t : set) {
                    Tuple<T> tuple = new Tuple<T>();
                    tuple.add(t);
                    tuples.add(tuple);
                }
            } else {
                List<Tuple<T>> newTuples = new ArrayList<Tuple<T>>();
                for (Tuple<T> subTuple : tuples) {
                    for (T t : set) {
                        Tuple<T> tuple = new Tuple<T>();
                        tuple.addAll(subTuple);
                        tuple.add(t);
                        newTuples.add(tuple);
                    }
                }
                tuples = newTuples;
            }
        }
        return tuples;
    }
}

The following answer uses iteration and not recursion. It uses the same Tuple class from my previous answer.

It is a separate answer because IMHO both are valid, different approaches.

Here is the new main class:

public class Example {
    public static <T> List<Tuple<T>> cartesianProduct(List<Set<T>> sets) {
        List<Tuple<T>> tuples = new ArrayList<Tuple<T>>();
        for (Set<T> set : sets) {
            if (tuples.isEmpty()) {
                for (T t : set) {
                    Tuple<T> tuple = new Tuple<T>();
                    tuple.add(t);
                    tuples.add(tuple);
                }
            } else {
                List<Tuple<T>> newTuples = new ArrayList<Tuple<T>>();
                for (Tuple<T> subTuple : tuples) {
                    for (T t : set) {
                        Tuple<T> tuple = new Tuple<T>();
                        tuple.addAll(subTuple);
                        tuple.add(t);
                        newTuples.add(tuple);
                    }
                }
                tuples = newTuples;
            }
        }
        return tuples;
    }
}
寄意 2024-08-17 21:32:18

这是一种惰性迭代器方法,它使用函数来生成适当的输出类型。

public static <T> Iterable<T> cartesianProduct(
        final Function<Object[], T> fn, Object[]... options) {
    final Object[][] opts = new Object[options.length][];
    for (int i = opts.length; --i >= 0; ) {
        // NPE on null input collections, and handle the empty output case here
        // since the iterator code below assumes that it is not exhausted the
        // first time through fetch.
        if (options[i].length == 0) {
            return Collections.emptySet();
        }
        opts[i] = options[i].clone();
    }
    return new Iterable<T>() {
        public Iterator<T> iterator() {
            return new Iterator<T>() {
                final int[] pos = new int[opts.length];
                boolean hasPending;
                T pending;
                boolean exhausted;

                public boolean hasNext() {
                    fetch();
                    return hasPending;
                }

                public T next() {
                    fetch();
                    if (!hasPending) {
                        throw new NoSuchElementException();
                    }
                    T out = pending;
                    pending = null;  // release for GC
                    hasPending = false;
                    return out;
                }

                public void remove() {
                    throw new UnsupportedOperationException();
                }

                private void fetch() {
                    if (hasPending || exhausted) {
                        return;
                    }
                    // Produce a result.
                    int n = pos.length;
                    Object[] args = new Object[n];
                    for (int j = n; --j >= 0; ) {
                        args[j] = opts[j][pos[j]];
                    }
                    pending = fn.apply(args);
                    hasPending = true;
                    // Increment to next.
                    for (int i = n; --i >= 0; ) {
                        if (++pos[i] < opts[i].length) {
                            for (int j = n; --j > i; ) {
                                pos[j] = 0;
                            }
                            return;
                        }
                    }
                    exhausted = true;
                }
            };
        }
    };
}

Here is a lazy iterator approach that uses a function to produce an appropriate output type.

public static <T> Iterable<T> cartesianProduct(
        final Function<Object[], T> fn, Object[]... options) {
    final Object[][] opts = new Object[options.length][];
    for (int i = opts.length; --i >= 0; ) {
        // NPE on null input collections, and handle the empty output case here
        // since the iterator code below assumes that it is not exhausted the
        // first time through fetch.
        if (options[i].length == 0) {
            return Collections.emptySet();
        }
        opts[i] = options[i].clone();
    }
    return new Iterable<T>() {
        public Iterator<T> iterator() {
            return new Iterator<T>() {
                final int[] pos = new int[opts.length];
                boolean hasPending;
                T pending;
                boolean exhausted;

                public boolean hasNext() {
                    fetch();
                    return hasPending;
                }

                public T next() {
                    fetch();
                    if (!hasPending) {
                        throw new NoSuchElementException();
                    }
                    T out = pending;
                    pending = null;  // release for GC
                    hasPending = false;
                    return out;
                }

                public void remove() {
                    throw new UnsupportedOperationException();
                }

                private void fetch() {
                    if (hasPending || exhausted) {
                        return;
                    }
                    // Produce a result.
                    int n = pos.length;
                    Object[] args = new Object[n];
                    for (int j = n; --j >= 0; ) {
                        args[j] = opts[j][pos[j]];
                    }
                    pending = fn.apply(args);
                    hasPending = true;
                    // Increment to next.
                    for (int i = n; --i >= 0; ) {
                        if (++pos[i] < opts[i].length) {
                            for (int j = n; --j > i; ) {
                                pos[j] = 0;
                            }
                            return;
                        }
                    }
                    exhausted = true;
                }
            };
        }
    };
}
蓝梦月影 2024-08-17 21:32:18

我为字符串表编写了递归笛卡尔积算法。您可以将其修改为具有集合。下面是算法。我的文章中也对此进行了解释

public class Main {
    public static void main(String[] args) {
        String[] A = new String[]{"a1", "a2", "a3"};
        String[] B = new String[]{"b1", "b2", "b3"};
        String[] C = new String[]{"c1"};

        String[] cp = CartesianProduct(0, A, B, C);

        for (String s : cp) {
            System.out.println(s);
        }
    }

    public static String[] CartesianProduct(int prodLevel, String[] res, String[]... s) {
        if (prodLevel < s.length) {
            int cProdLen = res.length * s[prodLevel].length;
            String[] tmpRes = new String[cProdLen];

            for (int i = 0; i < res.length; i++) {
                for (int j = 0; j < s[prodLevel].length; j++) {
                    tmpRes[i * res.length + j] = res[i] + s[prodLevel][j];
                }
            }
            res = Main.CartesianProduct(prodLevel + 1, tmpRes, s);
        }
        return res;
    }
}

I wrote an recursive cartesian product algorithm for table of Strings. You can modify it to have sets istead. Below is the algorithm. It's also explained in my article

public class Main {
    public static void main(String[] args) {
        String[] A = new String[]{"a1", "a2", "a3"};
        String[] B = new String[]{"b1", "b2", "b3"};
        String[] C = new String[]{"c1"};

        String[] cp = CartesianProduct(0, A, B, C);

        for (String s : cp) {
            System.out.println(s);
        }
    }

    public static String[] CartesianProduct(int prodLevel, String[] res, String[]... s) {
        if (prodLevel < s.length) {
            int cProdLen = res.length * s[prodLevel].length;
            String[] tmpRes = new String[cProdLen];

            for (int i = 0; i < res.length; i++) {
                for (int j = 0; j < s[prodLevel].length; j++) {
                    tmpRes[i * res.length + j] = res[i] + s[prodLevel][j];
                }
            }
            res = Main.CartesianProduct(prodLevel + 1, tmpRes, s);
        }
        return res;
    }
}
围归者 2024-08-17 21:32:18

您可以使用 Stream.reduce 方法。

Java 9 没有额外的库。

public static <U> List<Set<U>> cartesianProduct(List<Set<? extends U>> sets) {
    // incorrect incoming data
    if (sets == null) return Collections.emptyList();
    return sets.stream()
            // non-null and non-empty sets
            .filter(set -> set != null && set.size() > 0)
            // represent each set element as Set<U>
            .map(set -> set.stream().map(Set::<U>of)
                    // Stream<List<Set<U>>>
                    .collect(Collectors.toList()))
            // summation of pairs of inner sets
            .reduce((set1, set2) -> set1.stream()
                    // combinations of inner sets
                    .flatMap(inner1 -> set2.stream()
                            // merge two inner sets into one
                            .map(inner2 -> Stream.of(inner1, inner2)
                                    .flatMap(Set::stream)
                                    .collect(Collectors.toSet())))
                    // list of combinations
                    .collect(Collectors.toList()))
            // List<Set<U>>
            .orElse(Collections.emptyList());
}

public static void main(String[] args) {
    Set<Integer> set1 = Set.of(1, 2);
    Set<Double> set2 = Set.of(3.0, 4.0);
    Set<Long> set3 = Set.of(5L, 6L);

    List<Set<Number>> sets = cartesianProduct(List.of(set1, set2, set3));
    // output
    sets.forEach(System.out::println);
}

输出(元素的顺序可能不同):

[1, 3.0, 5]
[1, 3.0, 6]
[1, 4.0, 5]
[1, 4.0, 6]
[2, 3.0, 5]
[2, 3.0, 6]
[2, 4.0, 5]
[2, 4.0, 6]

另请参阅:任意数量集合的笛卡尔积< /sup>

You can use Stream.reduce method.

Java 9 without additional libraries.

public static <U> List<Set<U>> cartesianProduct(List<Set<? extends U>> sets) {
    // incorrect incoming data
    if (sets == null) return Collections.emptyList();
    return sets.stream()
            // non-null and non-empty sets
            .filter(set -> set != null && set.size() > 0)
            // represent each set element as Set<U>
            .map(set -> set.stream().map(Set::<U>of)
                    // Stream<List<Set<U>>>
                    .collect(Collectors.toList()))
            // summation of pairs of inner sets
            .reduce((set1, set2) -> set1.stream()
                    // combinations of inner sets
                    .flatMap(inner1 -> set2.stream()
                            // merge two inner sets into one
                            .map(inner2 -> Stream.of(inner1, inner2)
                                    .flatMap(Set::stream)
                                    .collect(Collectors.toSet())))
                    // list of combinations
                    .collect(Collectors.toList()))
            // List<Set<U>>
            .orElse(Collections.emptyList());
}

public static void main(String[] args) {
    Set<Integer> set1 = Set.of(1, 2);
    Set<Double> set2 = Set.of(3.0, 4.0);
    Set<Long> set3 = Set.of(5L, 6L);

    List<Set<Number>> sets = cartesianProduct(List.of(set1, set2, set3));
    // output
    sets.forEach(System.out::println);
}

Output (the order of the elements may differ):

[1, 3.0, 5]
[1, 3.0, 6]
[1, 4.0, 5]
[1, 4.0, 6]
[2, 3.0, 5]
[2, 3.0, 6]
[2, 4.0, 5]
[2, 4.0, 6]

See also: Cartesian product of an arbitrary number of sets

离去的眼神 2024-08-17 21:32:18

您可能对有关笛卡尔积的另一个问题感兴趣(编辑:删除以保存超链接,搜索标签笛卡尔积)。这个答案有一个很好的递归解决方案,我很难改进。您是否特别想要迭代解决方案而不是递归解决方案?


在查看了 Perl 中堆栈溢出的另一个迭代解决方案和一个干净的解释,这是另一个解决方案:

public static <T> List<Set<T>> uglyCartesianProduct(List<Set<T>> list) {
    List<Iterator<T>> iterators = new ArrayList<Iterator<T>>(list.size());
    List<T> elements = new ArrayList<T>(list.size());
    List<Set<T>> toRet = new ArrayList<Set<T>>();

    for (int i = 0; i < list.size(); i++) {
        iterators.add(list.get(i).iterator());
        elements.add(iterators.get(i).next());
    }

    for (int i = 0; i < numberOfTuples(list); i++) {
        toRet.add(new HashSet<T>());
    }

    int setIndex = 0;
    for (Set<T> set : list) {
        int index = 0;
        for (int i = 0; i < numberOfTuples(list); i++) {
            toRet.get(index).add((T) set.toArray()[index % set.size()]);
            index++;
        }
        setIndex++;
    }
    return toRet;
}

private static <T> int numberOfTuples(List<Set<T>> list) {
    int product = 1;
    for (Set<T> set : list) {
        product *= set.size();
    }
    return product;
}

You might be interested in Another question about cartesian products (edit: removed to conserve hyperlinks, search for the tag cartesian products). That answer has a nice recursive solution that I'd be hard pressed to improve on. Do you specifically want an iterative solution instead of recursive solution?


After looking at another iterative solution on stack overflow in perl and a clean explanation, here is another solution:

public static <T> List<Set<T>> uglyCartesianProduct(List<Set<T>> list) {
    List<Iterator<T>> iterators = new ArrayList<Iterator<T>>(list.size());
    List<T> elements = new ArrayList<T>(list.size());
    List<Set<T>> toRet = new ArrayList<Set<T>>();

    for (int i = 0; i < list.size(); i++) {
        iterators.add(list.get(i).iterator());
        elements.add(iterators.get(i).next());
    }

    for (int i = 0; i < numberOfTuples(list); i++) {
        toRet.add(new HashSet<T>());
    }

    int setIndex = 0;
    for (Set<T> set : list) {
        int index = 0;
        for (int i = 0; i < numberOfTuples(list); i++) {
            toRet.get(index).add((T) set.toArray()[index % set.size()]);
            index++;
        }
        setIndex++;
    }
    return toRet;
}

private static <T> int numberOfTuples(List<Set<T>> list) {
    int product = 1;
    for (Set<T> set : list) {
        product *= set.size();
    }
    return product;
}
薄凉少年不暖心 2024-08-17 21:32:18

我相信这是正确的。它不追求效率,而是通过递归和抽象来追求干净的风格。

关键的抽象是引入一个简单的Tuple类。这有助于以后的泛型:

class Tuple<T> {
    private List<T> list = new ArrayList<T>();

    public void add(T t) { list.add(t); }

    public void addAll(Tuple<T> subT) {
        for (T t : subT.list) {
            list.add(t);
        }
    }

    public String toString() {
        String result = "(";

        for (T t : list) { result += t + ", "; }

        result = result.substring(0, result.length() - 2);
        result += " )";

        return result;
    }
}

有了这个类,我们可以编写一个像这样的类:

public class Example {
    public static <T> List<Tuple<T>> cartesianProduct(List<Set<T>> sets) {
        List<Tuple<T>> tuples = new ArrayList<Tuple<T>>();

        if (sets.size() == 1) {
            Set<T> set = sets.get(0);
            for (T t : set) {
                Tuple<T> tuple = new Tuple<T>();
                tuple.add(t);
                tuples.add(tuple);
            }
        } else {
            Set<T> set = sets.remove(0);
            List<Tuple<T>> subTuples = cartesianProduct(sets);
            System.out.println("TRACER size = " + tuples.size());
            for (Tuple<T> subTuple : subTuples) {
                for (T t : set) {
                    Tuple<T> tuple = new Tuple<T>();
                    tuple.addAll(subTuple);
                    tuple.add(t);
                    tuples.add(tuple);
                }
            }
        }
        return tuples;
    }
}

我有一个很好的例子,但为了简洁起见,它被省略了。

I believe this is correct. It is not seeking efficiency, but a clean style through recursion and abstraction.

The key abstraction is to introduce a simple Tuple class. This helps the generics later:

class Tuple<T> {
    private List<T> list = new ArrayList<T>();

    public void add(T t) { list.add(t); }

    public void addAll(Tuple<T> subT) {
        for (T t : subT.list) {
            list.add(t);
        }
    }

    public String toString() {
        String result = "(";

        for (T t : list) { result += t + ", "; }

        result = result.substring(0, result.length() - 2);
        result += " )";

        return result;
    }
}

With this class, we can write a class like so:

public class Example {
    public static <T> List<Tuple<T>> cartesianProduct(List<Set<T>> sets) {
        List<Tuple<T>> tuples = new ArrayList<Tuple<T>>();

        if (sets.size() == 1) {
            Set<T> set = sets.get(0);
            for (T t : set) {
                Tuple<T> tuple = new Tuple<T>();
                tuple.add(t);
                tuples.add(tuple);
            }
        } else {
            Set<T> set = sets.remove(0);
            List<Tuple<T>> subTuples = cartesianProduct(sets);
            System.out.println("TRACER size = " + tuples.size());
            for (Tuple<T> subTuple : subTuples) {
                for (T t : set) {
                    Tuple<T> tuple = new Tuple<T>();
                    tuple.addAll(subTuple);
                    tuple.add(t);
                    tuples.add(tuple);
                }
            }
        }
        return tuples;
    }
}

I have a decent example of this working, but it is omitted for brevity.

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文