线性独立矩阵

发布于 2024-08-10 20:00:12 字数 197 浏览 9 评论 0原文

假设我们有一个 m × n 矩阵 A,其秩为 m 和一个集合 K⊆{1..n},使得由 K 索引的 A 的列是线性无关的。现在我们想要扩展 K 并找到一个集合 L,使得 k⊆L 和由 L 索引的列也线性无关。

一种方法是开始向 K 添加列索引,并使用高斯消元法等测试新集合是否线性独立。但是有没有更好的方法,这样我就不需要测试添加的每个索引。

谢谢

Suppose we have a m by n matrix A with rank m and a set K⊆{1..n} such that the columns of A indexed by K are linearly independent. Now we want to extend K and find a set L so that k⊆L and columns indexed by L are linearly independent too.

One way of doing it would be to start adding column indexes to K and test if the new set are linearly independent or not by using Gaussian Elimination for example. But is there a better way so that I would not need to test for every index added.

Thank You

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(1

残疾 2024-08-17 20:00:12

只是因为还没有人正式回答......你不能只使用二维码吗?

Q, R = qr(A)

QR 分解找到正交矩阵 Q 和上三角矩阵 R,使得 A = QR。它实现了 Gram-Schmidt 算法来查找 A 的正交基。Q

的列是正交的,因此线性无关。 Q 的前 n 列跨越 A 的列空间。所以 Q 应该给你你想要的。

Only because no one officially answered yet... can't you just use QR?

Q, R = qr(A)

QR factorization finds orthonormal matrix Q and upper triangular matrix R such that A = QR. It implements the Gram-Schmidt algorithm for finding an orthonormal basis for A.

The columns of Q are orthonormal, hence linearly independent. And the first n columns of Q span the column space of A. So Q should give you what you want.

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文