如何制定MFCC算法?

发布于 2024-08-10 02:21:59 字数 307 浏览 14 评论 0原文

我想做梅尔频率倒谱算法,但有些事情我不明白。

FTT 完成后,我们需要“使用三角形重叠窗口将上面获得的频谱的功率映射到梅尔标度上”。

我知道如何计算三角形,也知道如何传递到梅尔比例。 我根本不知道该怎么处理它们。

如果定义了三角形,我如何将上面获得的光谱的功率映射到梅尔标度上?

是不是这样: 将三角形内的频率相加,然后将其传递到梅尔标度? 或者 根据权重值(由三角形在该点的高度定义)对三角形内的频率求和,然后将其传递给梅尔比例? 或者 根据权重值将三角形内的所有频率传递到梅尔标度? 另一件事?

谁能向我澄清这一点

I wanna make the Mel-Frequency Cepstrum Algorithm but there are some things that I don't understand.

After FTT is done we need to "Map the powers of the spectrum obtained above onto the mel scale, using triangular overlapping windows."

I know how to calculate the triangles and I also know how to pass to mel scale.
I simply don't know what to do with them.

If the triangles are defined, how do I map the power of the spectrum obtained above onto the mel scale?

Is it like this:
Sum the frequencies inside the triangle and then pass it to mel scale?
or
Sum the frequencies inside the triangle according to a weight value (defined by the height of the triangle at that point) and then pass it to mel scale?
or
Pass all the frequencies inside the triangle to mel scale according to the weith value?
Another thing?

Can anyone clarifies this to me

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(1

凝望流年 2024-08-17 02:21:59

我认为这个过程的这一步有点奇怪,并且没有完全意义(无论如何对我来说)。滤波器带的中心沿着梅尔标度等距分布,但在线性标度上是三角形,即如图 此处

然后使用这些三角形沿线性 x 轴计算加权和。 (在前面的步骤中,我认为有些方法通过过滤器三角形的面积进行归一化,有些方法则不然,老实说,我不确定这里的最终结果,尽管我怀疑除了修改最终解释无论如何都是相对比较。一个保持总能量,另一个给出每个频带的同等加权贡献。)然后取其对数(将整体体积因子转换为偏移量)。

编辑:
为了更清楚地应用过滤器...每个三角形代表一个单独的过滤器,产生单独的加权和。如果您的滤波器组中有二十个滤波器,则将有二十个三角形和二十个加权和需要计算。要应用每个过滤器,对于每个 x 轴值,将该 x 位置处的过滤器值乘以该 x 位置处的函数值,并将其添加到该特定过滤器的总和中。大多数 x 轴值都有两个过滤器,因此每个 x 轴位置都会对两个过滤器做出贡献。

I think this step of the process is a little weird and doesn't make complete sense (to me anyway). The center of the filter bands are equally spaced along the mel scale, but are triangles on the linear scale, i.e. just like the figure here.

Then calculate the weighted sum using these triangle along the linear x-axis. (In this previous step, I think that some approaches normalize by the filter-triangle's area, and some don't, and I'm honestly not sure about the final consequences here, though I suspect it may not mean much except to modify the final interpretation which are all relative comparisons anyway. One maintains total energy, and the other give equally weighted contributions per band.) Then take the log of this (which converts the overall volume factor to an offset).

Edit:
To be more clear on applying the filters... Each triangle represents a separate filter, producing a separate weighted sum. If there twenty filters in your filter bank, there will be twenty triangles, and twenty weighted sums to calculate. To apply each filter, for each x-axis value multiple the filter value at that x-location by the function value at that x-location, and add this to the sum for that particular filter. Most x-axis values with have two filters that are present there, so at each x-location makes a contribution to two filters.

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文