共识树或“引导比例”来自多个 hclust 对象

发布于 2024-08-09 02:29:30 字数 636 浏览 11 评论 0原文

我有一个由一个变量的微小变化(用于计算距离矩阵)产生的 hclust 对象列表,

  • 现在我想从这个列表中创建一个共识树。

有通用包可以做到这一点吗?我正在破解我的出路 maanova 的一些代码似乎可以工作 - 但它很丑陋而且它 需要大量的黑客工作,因为我没有进行“正常”的引导(它是 化学数据)。

/Palle Villesen,丹麦

c1_list <- seq(10,100,by=10)
c2 <- 30
e<- 1
mboot <- list()
for (i in 1: length(c1_list) ) {
   c1 <- c1_list[i]
   cat("Doing C1=",c1,"...")
   x <- hclust(custom_euclidean(t(log2(data[, all]+1)), c1,c2,e), method='average')
   cat("..done\n")
   mboot[[i]] <- x # To get hclust object back use mbot[[i]] to get i'th object
}

#### Now extract the robust groups from mboot...

I have a list of hclust objects resulting from slight variations in one variable (for calculating the distance matrix)

  • now I would like to make a consensus tree from this list.

Is there a generic package to do this? I am hacking my way through
some code from maanova and it seems to work - but it's ugly and it
needs a lot of hacking since I am not doing "normal" bootstrapping (it's
chemical data).

/Palle Villesen, Denmark

c1_list <- seq(10,100,by=10)
c2 <- 30
e<- 1
mboot <- list()
for (i in 1: length(c1_list) ) {
   c1 <- c1_list[i]
   cat("Doing C1=",c1,"...")
   x <- hclust(custom_euclidean(t(log2(data[, all]+1)), c1,c2,e), method='average')
   cat("..done\n")
   mboot[[i]] <- x # To get hclust object back use mbot[[i]] to get i'th object
}

#### Now extract the robust groups from mboot...

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(2

无戏配角 2024-08-16 02:29:30

首先,看一下 Allan Tucker 的共识集群代码,与他的相关论文“基因表达数据的共识聚类和功能解释”

以下是其他一些提示:

First, have a look at Allan Tucker's code for consensus clustering, related to his paper "Consensus Clustering and Functional Interpretation of Gene Expression Data".

Here are a few other pointers:

对你的占有欲 2024-08-16 02:29:30

嗯,这听起来像是应用于集群的增强方法,快速的 Google 搜索揭示了关于 增强集群。也许这是一个开始?

至于R代码,总是有关于聚类的任务视图和机器学习

Hm, that sounds like a boosting approach applied to clustering, and a quick Google search reveals quite an existing literature on boosting clustering. Maybe that is a start?

As for R code, there are always the Task Views on Clustering and Machine Learning.

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文