给定 5 个数字,找出中位数所需的最少比较次数是多少?

发布于 2024-08-08 14:41:49 字数 23 浏览 2 评论 0原文

一般情况下如何设置最小比较次数?

how do you setup minimum number of comparisons in general?

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(3

终陌 2024-08-15 14:41:49

引用 Donald Knuth(通过维基百科,因为我目前没有 TAOCP 的副本),比较次数的下限是六:

http://en.wikipedia.org/wiki/Selection_algorithm(向下滚动到标题为“下限”的部分)。

您的目标实际上是找到 k 个最低值,其中 k 是列表大小的一半,向上舍入(因此,k = 3;n = 5),然后取其中的最大值。将其代入页面上的公式中,您将得到:

(5 - 3) + 1 + 1 + 2 = 6

在本例中, 实际所需的最少比较次数也是六次

如果您怀疑找到中位数的任务与找到 k 个最低值一样困难,您可以参考 Knuth 的 TAoCP,第 3 卷,第 5.3.3 章后的练习#2。

To cite Donald Knuth (by way of Wikipedia, since I don't have my copy of TAOCP at the moment), the lower bound for the number of comparisons is six:

http://en.wikipedia.org/wiki/Selection_algorithm (scroll down to the section entitled "Lower Bounds").

Your goal is, effectively, to find the k lowest values where k is half the size of the list, rounded up, (so, k = 3; n = 5) and then take the max of those. Plugging that into the formula there on the page, you get:

(5 - 3) + 1 + 1 + 2 = 6

In this case, the actual minimum number of required comparisons is also six.

If you're in doubt that the task of finding the median is as hard as finding k lowest values, you may refer to Knuth's TAoCP, volume 3, excercise #2 after 5.3.3 chapter.

花想c 2024-08-15 14:41:49

Donald Knuth 的《计算机编程艺术》第 3 卷第 5.3.3 节“最小比较选择”中有很多相关材料,其中更一般性的问题考虑选择 n 个值中第 t 个最大值所需的最少比较次数。 (该值用Vt(n)表示)。

Knuth 给出 Vt(n) 的上限 n - t + (t-1)⌈lg(n + 2 - t)⌉ em>,通过首先通过锦标赛系统确定n - t + 2的最大元素,删除它(因为它不可能是t最大)并替换它来实现剩下的元素之一,继续这个过程,直到所有元素都成为这个过程的一部分,然后这个阶段最大的元素是原始集合中第t最大的元素。在本例中,n = 5t = 3,因此此公式给出的上限为 6 次比较。

Knuth 提到,当 n ≤ 6 时,这个上限是精确的,因此适用于这种情况。一般来说,我的理解是,没有找到用于选择(和排序)的最小比较算法的通用程序,并且 n 值增加的记录通常使用特殊技巧,这些技巧通常不适用于当n增加时,更大的值或简单地被其他技巧击败。

There is a lot of material on this in volume 3 of Donald Knuth's The Art of Computer Programming, in section 5.3.3, Minimum-Comparison Selection, where the more general question of the minimum number of comparisons required to select the tth largest of n values is considered. (This value is denoted by Vt(n)).

Knuth gives an upper bound of n - t + (t-1)⌈lg(n + 2 - t)⌉ for Vt(n), achieved by first determining the largest element of n - t + 2 by a tournament system, removing this (since it cannot be the tth largest) and replacing it with one of the remaining elements, continuing this procedure until all elements have been a part of this procedure, and then the largest element at this stage is the tth largest of the original set. In this case, n = 5 and t = 3, so the upper bound given by this formula is 6 comparisons.

Knuth mentions that this upper bound is exact when n ≤ 6, so that applies in this case. In general, my understanding is that there are no general procedures for finding minimum-comparison algorithms for selection (and sorting), and records for increasing values of n typically use special tricks that either are not generally applicable to larger values or are simply beaten by other tricks when n increases.

噩梦成真你也成魔 2024-08-15 14:41:49

答案是 6。具体方法如下。
(最初发布于我如何计算C# 中的“五的中位数”?

让我们用 abc 表示这五个数字, de

比较abcd。 WLOG 让a bc d。 (到目前为止已进行 2 次比较)

比较 ac。 WLOG 让a c。 (3)

比较be。 (4) 请注意,使用 b 代替 d(并且它们不能交换),因为 b 是以下较小者的“对应项” ac

情况 1:令 b b b b b e

____比较bc——较大的值是中位数。 (5)

情况2:令b> e

____比较ae。 (5)

____情况2.1:令a a a a a e

____比较ce——较大的值是中位数。 (6)

____情况2.2:令a> e

____比较bc——较小的值是中位数。 (6)

(格式很丑 ik >.<)

Answer is 6. Here's how.
(Originally posted on How do I calculate the "median of five" in C#?)

Let's denote these five numbers by a, b, c, d, and e.

Compare a and b, c and d. WLOG let a < b, c < d. (2 comparisons so far)

Compare a and c. WLOG let a < c. (3)

Compare b and e. (4) Note that b is used instead of d (and they cannot be swapped) because b is the "counterpart" of the smaller of a and c.

Case 1: let b < e.

____Compare b and c — the greater value is the median. (5)

Case 2: let b > e.

____Compare a and e. (5)

____Case 2.1: let a < e.

________Compare c and e — the greater value is the median. (6)

____Case 2.2: let a > e.

________Compare b and c — the smaller value is the median. (6)

(Formatting is ugly ik >.<)

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文