在java中制作决策树的最佳学习算法?

发布于 2024-08-08 11:25:39 字数 297 浏览 8 评论 0原文

我有一个数据集,其中包含年龄、城市、儿童年龄等信息以及结果(确认、接受)。

为了帮助“工作流程”建模,我想根据以前的数据集自动创建决策树。

我查看了 http://en.wikipedia.org/wiki/Decision_tree_learning 并且我知道问题显然不明显。

我只是想就这个主题的一些算法或一些库提供建议,这些建议可以帮助我基于样本构建决策树。

I have a datasets with information like age, city, age of children, ... and a result (confirm, accept).

To help modelisation of "workflow", I want to create automatically a decision tree based on previous datasets.

I have take a look at http://en.wikipedia.org/wiki/Decision_tree_learning and I know that the problem is clearly not obvious.

I just want to have advice on some algorithm or some libs on this subject what can help me in the contruction of a decision tree based on samples.

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(2

你如我软肋 2024-08-15 11:25:39

您应该看看 Weka,一个基于 Java 的免费监督学习套件。

将数据转换为 Weka 简单的基于文本的 .arff 格式后,您应该能够使用 GUI 或用于在该数据上训练和测试各种不同分类器的命令行界面,包括:

  • 决策树
  • 神经网络
  • 基于规则的系统
  • 支持向量机 (SVM)
  • 各种类型的回归

使用此界面进行实验应该可以让您轻松尝试不同的分类器和训练参数以确定哪些参数对您的数据表现最好。

您还可以使用 API 将 Weka 集成到您自己的源代码中

You should take a look at Weka, a free Java-based supervised learning suite.

After converting your data into Weka's simple text-based .arff format, you should be able to use the GUI or command-line interface to train and test a variety of different classifiers on that data, including:

  • decision trees
  • neural networks
  • rule-based systems
  • support vector machines (SVMs)
  • various types of regression

Experimenting with this interface should allow you to easily try different classifiers and training parameters to determine which ones perform the best on your data.

You can also use an API to integrate Weka into your own source code.

扎心 2024-08-15 11:25:39

如果您想比较 Weka 不同类型决策树的性能,请参阅 TunedIT.org 中收集的基准测试结果:

http://tunedit.org/results?d=UCI&a=Weka*tree

使用下拉列表和算法/数据集的命名模式来选择应显示哪些结果。

If you want to compare performance of different types of decision trees from Weka, see benchmark results collected in TunedIT.org:

http://tunedit.org/results?d=UCI&a=Weka*tree.

Play with drop-down lists and name patterns of algorithms/datasets to choose which results should be presented.

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文