如何利用神经网络解决“软”问题解决方案?

发布于 2024-08-08 09:32:59 字数 72 浏览 9 评论 0原文

我正在考虑在我正在构建的太空射击游戏中使用神经网络为我的敌人提供动力,我想知道;当网络没有一组明确的良好输出时,如何训练神经网络?

I'm considering using a neural network to power my enemies in a space shooter game i'm building and i'm wondering; how do you train neural networks when there is no one definitive good set of outputs for the network?

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(4

红颜悴 2024-08-15 09:32:59

我目前正在研究神经网络,如果没有明确定义的输入和输出编码,它们似乎毫无用处,而且它们根本无法扩展到复杂性(请参阅http://en.wikipedia.org/wiki/VC_dimension)。这就是为什么神经网络研究自 20-30 多年前最初的炒作以来几乎没有什么应用,而基于语义/状态的人工智能由于在现实世界应用中的成功而吸引了每个人的兴趣。

  • 一个好的起点可能是弄清楚如何用数字表示游戏的状态作为神经网络的输入。
  • 接下来的事情是弄清楚什么样的输出对应于游戏中的动作。
  • 考虑要使用的神经网络的结构。为了从神经网络中获得有趣的复杂行为,网络几乎必须是循环的。你需要一个循环网络,因为它们有“记忆”,但除此之外你没有太多其他的东西可以继续。然而,具有任何复杂结构的循环网络确实很难训练其行为。
  • 神经网络取得成功的领域往往是分类(图像、音频、语法等),而在统计预测方面的成功有限(我们期望这个词后面出现什么词,明天的股票价格是多少?

) ,对你来说,在游戏的一小部分中使用神经网络可能会更好,而不是作为核心敌人 AI。

I'm studying neural networks at the moment, and they seem quite useless without well defined input and output encodings, and they don't scale at all to complexity (see http://en.wikipedia.org/wiki/VC_dimension). that's why neural network research has had so little application since the initial hype more than 20-30 years ago while semantic/state based AI took over everyone's interests because of it's success in real world applications.

  • A so a good place to start might be to figure out how to numerically represent the state of the game as inputs for the neural net.
  • The next thing would be to figure out what kind of output would correspond to actions in the game.
  • think about the structure of neural network to use. To get interesting complex behavior from neural networks, the network almost has to be recurrent. You'll need a recurrent network because they have 'memory', but beyond that you don't have much else to go on. However, recurrent networks with any complex structure is really hard to train to behave.
  • The areas where neural networks have been successful tend to be classification (image, audio, grammar, etc) and limited success in statistical prediction (what word would we expect to come after this word, what will the stock price be tomorrow?)

In short, it's probably better for you to use Neural nets for a small portion of the game rather as the core enemy AI.

单身情人 2024-08-15 09:32:59

您可以查看AI动态游戏难度平衡了解各种AI技术和参考。

(IMO,你可以实现敌人行为,例如“包围敌人”,这将非常酷,而无需深入研究先进的人工智能概念)

编辑:因为你正在制作一款太空射击游戏,并且你想要为你的敌人提供某种人工智能,我相信你会发现这个链接很有趣:自主角色的转向行为

You can check out AI Dynamic game difficulty balancing for various AI techniques and references.

(IMO, you can implement enemy behaviors, like "surround the enemy", which will be really cool, without delving into advanced AI concepts)

Edit: since you're making a space shooter game and you want some kind of AI for your enemies, I believe you'll find interesting this link: Steering Behaviors For Autonomous Characters

攒一口袋星星 2024-08-15 09:32:59

您是否认为可以轻松修改 FSM 以响应刺激?毕竟它只是一个数字表,您可以将其保存在内存中的某个位置并随时更改数字。我在一篇引发热议的博客中写了一些相关内容,奇怪的是,它被一些游戏人工智能新闻网站转载了。然后,那个构建了可以击败人类并了解真实新闻的吃豆女士人工智能的人在我的博客上留下了评论,其中包含指向更有用信息的链接,

这是我的博客文章,其中包含我关于使用马尔可夫的一些想法的语无伦次的漫无目的的内容链不断适应游戏环境,也许还可以叠加和组合计算机已经了解的有关玩家对游戏情况如何反应的信息。

http://bustingseams.blogspot.com/2008/03/funny- obsessive-ideas.html

这是 先生关于强化学习的精彩资源的链接。聪明的麦克帕克曼为我发帖。

http://www.cs.ualberta.ca/% 7Esutton/book/ebook/the-book.html

这是另一个很酷的链接

http://aigamedev.com/open/architecture/online-adaptation-game-opponent/

这些不是神经网络方法,但它们确实适应并不断学习,并且可能比神经网络更适合游戏网络。

Have you considered that it's easily possible to modify an FSM in response to stimulus? It is just a table of numbers after all, you can hold it in memory somewhere and change the numbers as you go. I wrote about it a bit in one of my blog fuelled deleriums, and it oddly got picked up by some Game AI news site. Then the guy who built a Ms. Pacman AI that could beat humans and got on the real news left a comment on my blog with a link to even more useful information

here's my blog post with my incoherant ramblings about some idea I had about using markov chains to continually adapt to a game environment, and perhaps overlay and combine something that the computer has learned about how the player reacts to game situations.

http://bustingseams.blogspot.com/2008/03/funny-obsessive-ideas.html

and here's the link to the awesome resource about reinforcement learning that mr. smarty mcpacman posted for me.

http://www.cs.ualberta.ca/%7Esutton/book/ebook/the-book.html

here's another cool link

http://aigamedev.com/open/architecture/online-adaptation-game-opponent/

These are not neural net approaches, but they do adapt and continually learn, and are probably better suited to games than neural networks.

默嘫て 2024-08-15 09:32:59

我将向您推荐马修·巴克兰的两本书。

第二本书介绍了反向传播 ANN,这就是大多数人在讨论时的意思。
无论如何,谈谈NN。

也就是说,如果你想创建有意义的游戏人工智能,我认为第一本书更有用。有一个关于成功使用 FSM 的精彩而充实的部分(是的,很容易让自己被 FSM 绊倒)。

I'll refer you to two of Matthew Buckland's books.

The second book goes into back-propagation ANN, which is what most people mean when they
talk about NN anyway.

That said, I think the first book is more useful if you want to create meaningful game AI. There's a nice, meaty section on using FSM successfully (and yes, it's easy to trip yourself up with a FSM).

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文