所需算法:绘制圆点轮廓
是否有一个完善的算法我可以窃取^h^h^h^h^h 副本,该副本将在给定充满点的区域的情况下绘制轮廓形状?
我特别想到这一点:
约翰·康威的生活:这可能是从“设计立场”(丹·丹尼特的短语)看待生活的好方法 - 这样做的一种方法是围绕已知模式绘制轮廓:或也许是连接点:在最远的地方画线——但在特定区域仍然相互作用的点。
所以滑翔机看起来仍然很像滑翔机:但更大的形状只会显示它们的轮廓。
我可能没有考虑过这一点[因为某些模式涉及“分离的”、非相互作用的点 - 只注定在未来一代中相互作用 - 我想你可以考虑这样的时间相互作用?],并且应该发布到'www.halfbakery.com',但这也许很有趣......
Is there a well established algorithm I can steal^h^h^h^h^h copy which will draw an outline shape given an area filled with dots ?
I'm specifically thinking of this:
John Conway's Life: it might be nice way to see Life from the 'design-stance' (Dan Dennet's phrase) - and one way of doing this would be to draw outlines around either known patterns : or perhaps joining-the-dots : drawing the line on the furthest - but still interacting dots in a particular area.
So a glider would still look like a glider pretty much: but bigger shapes would just show their outline.
I haven't thought this through probably [as some patterns involve 'separated', non-interacting dots - only destined to interact in a future generation - I guess you could factor in a temporal interaction like this?] , and should have posted to 'www.halfbakery.com' , but maybe this is interesting .....
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(1)
查看 Graham 扫描 (凸包 算法)。
Check out Graham scan (convex hull algorithms).