如何获取集合的所有子集? (动力组)

发布于 2024-08-05 09:50:28 字数 247 浏览 12 评论 0原文

给定一个集合,

{0, 1, 2, 3}

我怎样才能产生子集:

[set(),
 {0},
 {1},
 {2},
 {3},
 {0, 1},
 {0, 2},
 {0, 3},
 {1, 2},
 {1, 3},
 {2, 3},
 {0, 1, 2},
 {0, 1, 3},
 {0, 2, 3},
 {1, 2, 3},
 {0, 1, 2, 3}]

Given a set

{0, 1, 2, 3}

How can I produce the subsets:

[set(),
 {0},
 {1},
 {2},
 {3},
 {0, 1},
 {0, 2},
 {0, 3},
 {1, 2},
 {1, 3},
 {2, 3},
 {0, 1, 2},
 {0, 1, 3},
 {0, 2, 3},
 {1, 2, 3},
 {0, 1, 2, 3}]

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(30

栖竹 2024-08-12 09:50:28

Python itertools 页面一个powerset配方:

from itertools import chain, combinations

def powerset(iterable):
    "powerset([1,2,3]) --> () (1,) (2,) (3,) (1,2) (1,3) (2,3) (1,2,3)"
    s = list(iterable)
    return chain.from_iterable(combinations(s, r) for r in range(len(s)+1))

输出:

>>> list(powerset("abcd"))
[(), ('a',), ('b',), ('c',), ('d',), ('a', 'b'), ('a', 'c'), ('a', 'd'), ('b', 'c'), ('b', 'd'), ('c', 'd'), ('a', 'b', 'c'), ('a', 'b', 'd'), ('a', 'c', 'd'), ('b', 'c', 'd'), ('a', 'b', 'c', 'd')]

如果您不喜欢开头的空元组,您可以将range语句更改为range(1, len(s)+1) 以避免 0 长度的组合。

The Python itertools page has exactly a powerset recipe for this:

from itertools import chain, combinations

def powerset(iterable):
    "powerset([1,2,3]) --> () (1,) (2,) (3,) (1,2) (1,3) (2,3) (1,2,3)"
    s = list(iterable)
    return chain.from_iterable(combinations(s, r) for r in range(len(s)+1))

Output:

>>> list(powerset("abcd"))
[(), ('a',), ('b',), ('c',), ('d',), ('a', 'b'), ('a', 'c'), ('a', 'd'), ('b', 'c'), ('b', 'd'), ('c', 'd'), ('a', 'b', 'c'), ('a', 'b', 'd'), ('a', 'c', 'd'), ('b', 'c', 'd'), ('a', 'b', 'c', 'd')]

If you don't like that empty tuple at the beginning, you can just change the range statement to range(1, len(s)+1) to avoid a 0-length combination.

凉城已无爱 2024-08-12 09:50:28

这是 powerset 的更多代码。这是从头开始写的:

>>> def powerset(s):
...     x = len(s)
...     for i in range(1 << x):
...         print [s[j] for j in range(x) if (i & (1 << j))]
...
>>> powerset([4,5,6])
[]
[4]
[5]
[4, 5]
[6]
[4, 6]
[5, 6]
[4, 5, 6]

Mark Rushakoff 的评论适用于此:“如果您不喜欢开头的空元组,则。”您只需将 range 语句更改为 range(1, len(s)+1) 即可避免 0 长度组合”,除非在我的情况下,您将 for i in range(1 << x) 更改为 for i in range(1, 1 << x) )


几年后,我现在会这样写:

def powerset(s):
    x = len(s)
    masks = [1 << i for i in range(x)]
    for i in range(1 << x):
        yield [ss for mask, ss in zip(masks, s) if i & mask]

然后测试代码将如下所示:

print(list(powerset([4, 5, 6])))

使用 yield 意味着您不需要计算所有结果都在一块内存中,在主循环之外预先计算掩码被认为是值得优化的。

Here is more code for a powerset. This is written from scratch:

>>> def powerset(s):
...     x = len(s)
...     for i in range(1 << x):
...         print [s[j] for j in range(x) if (i & (1 << j))]
...
>>> powerset([4,5,6])
[]
[4]
[5]
[4, 5]
[6]
[4, 6]
[5, 6]
[4, 5, 6]

Mark Rushakoff's comment is applicable here: "If you don't like that empty tuple at the beginning, on."you can just change the range statement to range(1, len(s)+1) to avoid a 0-length combination", except in my case you change for i in range(1 << x) to for i in range(1, 1 << x).


Returning to this years later, I'd now write it like this:

def powerset(s):
    x = len(s)
    masks = [1 << i for i in range(x)]
    for i in range(1 << x):
        yield [ss for mask, ss in zip(masks, s) if i & mask]

And then the test code would look like this, say:

print(list(powerset([4, 5, 6])))

Using yield means that you do not need to calculate all results in a single piece of memory. Precalculating the masks outside the main loop is assumed to be a worthwhile optimization.

他夏了夏天 2024-08-12 09:50:28

如果您正在寻找快速答案,我刚刚在谷歌上搜索了“python power set”并得出了这个:Python Power Set Generator

这是该页面中代码的复制粘贴:

def powerset(seq):
    """
    Returns all the subsets of this set. This is a generator.
    """
    if len(seq) <= 1:
        yield seq
        yield []
    else:
        for item in powerset(seq[1:]):
            yield [seq[0]]+item
            yield item

可以像这样使用:

 l = [1, 2, 3, 4]
 r = [x for x in powerset(l)]

现在 r 是您的所有元素的列表想要的,并且可以排序和打印:

r.sort()
print r
[[], [1], [1, 2], [1, 2, 3], [1, 2, 3, 4], [1, 2, 4], [1, 3], [1, 3, 4], [1, 4], [2], [2, 3], [2, 3, 4], [2, 4], [3], [3, 4], [4]]

If you're looking for a quick answer, I just searched "python power set" on google and came up with this: Python Power Set Generator

Here's a copy-paste from the code in that page:

def powerset(seq):
    """
    Returns all the subsets of this set. This is a generator.
    """
    if len(seq) <= 1:
        yield seq
        yield []
    else:
        for item in powerset(seq[1:]):
            yield [seq[0]]+item
            yield item

This can be used like this:

 l = [1, 2, 3, 4]
 r = [x for x in powerset(l)]

Now r is a list of all the elements you wanted, and can be sorted and printed:

r.sort()
print r
[[], [1], [1, 2], [1, 2, 3], [1, 2, 3, 4], [1, 2, 4], [1, 3], [1, 3, 4], [1, 4], [2], [2, 3], [2, 3, 4], [2, 4], [3], [3, 4], [4]]
花间憩 2024-08-12 09:50:28

使用函数 powerset() 来自包 more-itertools

产生可迭代的所有可能的子集

>>> list(powerset([1, 2, 3]))
[(), (1,), (2,), (3,), (1, 2), (1, 3), (2, 3), (1, 2, 3)]

如果您想要集合,请使用:

list(map(set, powerset(iterable)))

Use function powerset() from package more-itertools.

Yields all possible subsets of the iterable

>>> list(powerset([1, 2, 3]))
[(), (1,), (2,), (3,), (1, 2), (1, 3), (2, 3), (1, 2, 3)]

If you want sets, use:

list(map(set, powerset(iterable)))
最初的梦 2024-08-12 09:50:28

我发现以下算法非常清晰和简单:

def get_powerset(some_list):
    """Returns all subsets of size 0 - len(some_list) for some_list"""
    if len(some_list) == 0:
        return [[]]

    subsets = []
    first_element = some_list[0]
    remaining_list = some_list[1:]
    # Strategy: get all the subsets of remaining_list. For each
    # of those subsets, a full subset list will contain both
    # the original subset as well as a version of the subset
    # that contains first_element
    for partial_subset in get_powerset(remaining_list):
        subsets.append(partial_subset)
        subsets.append(partial_subset[:] + [first_element])

    return subsets

生成幂集的另一种方法是生成具有 n 位的所有二进制数。作为幂集,n 位数字的数量为 2 ^ n。该算法的原理是,子集中可能存在或不存在元素,因为二进制数字可以是一或零,但不能同时是两者。

def power_set(items):
    N = len(items)
    # enumerate the 2 ** N possible combinations
    for i in range(2 ** N):
        combo = []
        for j in range(N):
            # test bit jth of integer i
            if (i >> j) % 2 == 1:
                combo.append(items[j])
        yield combo

我在学习 MITx: 6.00.2x 计算思维和数据科学简介时发现了这两种算法,我认为这是我见过的最容易理解的算法之一。

I have found the following algorithm very clear and simple:

def get_powerset(some_list):
    """Returns all subsets of size 0 - len(some_list) for some_list"""
    if len(some_list) == 0:
        return [[]]

    subsets = []
    first_element = some_list[0]
    remaining_list = some_list[1:]
    # Strategy: get all the subsets of remaining_list. For each
    # of those subsets, a full subset list will contain both
    # the original subset as well as a version of the subset
    # that contains first_element
    for partial_subset in get_powerset(remaining_list):
        subsets.append(partial_subset)
        subsets.append(partial_subset[:] + [first_element])

    return subsets

Another way one can generate the powerset is by generating all binary numbers that have n bits. As a power set the amount of number with n digits is 2 ^ n. The principle of this algorithm is that an element could be present or not in a subset as a binary digit could be one or zero but not both.

def power_set(items):
    N = len(items)
    # enumerate the 2 ** N possible combinations
    for i in range(2 ** N):
        combo = []
        for j in range(N):
            # test bit jth of integer i
            if (i >> j) % 2 == 1:
                combo.append(items[j])
        yield combo

I found both algorithms when I was taking MITx: 6.00.2x Introduction to Computational Thinking and Data Science, and I consider it is one of the easiest algorithms to understand I have seen.

つ低調成傷 2024-08-12 09:50:28
from functools import reduce
def powerset(lst):
    return reduce(lambda result, x: result + [subset + [x] for subset in result],
                  lst, [[]])
from functools import reduce
def powerset(lst):
    return reduce(lambda result, x: result + [subset + [x] for subset in result],
                  lst, [[]])
把梦留给海 2024-08-12 09:50:28

powerset 有一个细化:

def powerset(seq):
    """
    Returns all the subsets of this set. This is a generator.
    """
    if len(seq) <= 0:
        yield []
    else:
        for item in powerset(seq[1:]):
            yield [seq[0]]+item
            yield item

There is a refinement of powerset:

def powerset(seq):
    """
    Returns all the subsets of this set. This is a generator.
    """
    if len(seq) <= 0:
        yield []
    else:
        for item in powerset(seq[1:]):
            yield [seq[0]]+item
            yield item
够钟 2024-08-12 09:50:28

TL;DR(直接进入简化)

我知道我之前添加了一个答案,但我真的很喜欢我的新实现。我将一组作为输入,但它实际上可以是任何可迭代的,并且我返回一组集合,这是输入的幂集。我喜欢这种方法,因为它更符合幂集set所有子集)。

def power_set(A):
    """A is an iterable (list, tuple, set, str, etc)
    returns a set which is the power set of A."""
    length = len(A)
    l = [a for a in A]
    ps = set()

    for i in range(2 ** length):
        selector = f'{i:0{length}b}'
        subset = {l[j] for j, bit in enumerate(selector) if bit == '1'}
        ps.add(frozenset(subset))

    return ps

如果您想要确切地在答案中发布的输出,请使用以下内容:

>>> [set(s) for s in power_set({1, 2, 3, 4})]
[{3, 4},
 {2},
 {1, 4},
 {2, 3, 4},
 {2, 3},
 {1, 2, 4},
 {1, 2},
 {1, 2, 3},
 {3},
 {2, 4},
 {1},
 {1, 2, 3, 4},
 set(),
 {1, 3},
 {1, 3, 4},
 {4}]

解释

众所周知,幂集的元素数量为 2 ** len(A),因此可以清楚地看到for 循环。

我需要将输入(最好是集合)转换为列表,因为集合是唯一无序元素的数据结构,并且顺序对于生成子集至关重要。

选择器是该算法的关键。请注意,选择器的长度与输入集的长度相同,为了实现这一点,它使用带填充的 f 字符串。基本上,这允许我选择在每次迭代期间添加到每个子集的元素。假设输入集有 3 个元素 {0, 1, 2},因此选择器将采用 0 到 7(含)之间的值,其二进制为:

000 # 0
001 # 1
010 # 2
011 # 3
100 # 4
101 # 5
110 # 6
111 # 7

因此,每个位都可以用作指示符是否应添加原始集合的元素。查看二进制数,只需将每个数字视为超集的一个元素,其中 1 表示应添加索引 j 处的元素,而 0 表示不应添加此元素。

我使用集合理解在每次迭代时生成一个子集,并将该子集转换为frozenset,以便我可以将其添加到ps(幂集)。否则,我将无法添加它,因为 Python 中的集合仅包含不可变对象。

简化

您可以使用一些 python 推导式来简化代码,这样您就可以摆脱那些 for 循环。您还可以使用 zip 来避免使用 j 索引,代码最终将如下所示:

def power_set(A):
    length = len(A)
    return {
        frozenset({e for e, b in zip(A, f'{i:{length}b}') if b == '1'})
        for i in range(2 ** length)
    }

就是这样。我喜欢这个算法的原因是它比其他算法更清晰、更直观,因为依赖 itertools 看起来很神奇,尽管它按预期工作。

TL;DR (go directly to Simplification)

I know I have previously added an answer, but I really like my new implementation. I am taking a set as input, but it actually could be any iterable, and I am returning a set of sets which is the power set of the input. I like this approach because it is more aligned with the mathematical definition of power set (set of all subsets).

def power_set(A):
    """A is an iterable (list, tuple, set, str, etc)
    returns a set which is the power set of A."""
    length = len(A)
    l = [a for a in A]
    ps = set()

    for i in range(2 ** length):
        selector = f'{i:0{length}b}'
        subset = {l[j] for j, bit in enumerate(selector) if bit == '1'}
        ps.add(frozenset(subset))

    return ps

If you want exactly the output you posted in your answer use this:

>>> [set(s) for s in power_set({1, 2, 3, 4})]
[{3, 4},
 {2},
 {1, 4},
 {2, 3, 4},
 {2, 3},
 {1, 2, 4},
 {1, 2},
 {1, 2, 3},
 {3},
 {2, 4},
 {1},
 {1, 2, 3, 4},
 set(),
 {1, 3},
 {1, 3, 4},
 {4}]

Explanation

It is known that the number of elements of the power set is 2 ** len(A), so that could clearly be seen in the for loop.

I need to convert the input (ideally a set) into a list because by a set is a data structure of unique unordered elements, and the order will be crucial to generate the subsets.

selector is key in this algorithm. Note that selector has the same length as the input set, and to make this possible it is using an f-string with padding. Basically, this allows me to select the elements that will be added to each subset during each iteration. Let's say the input set has 3 elements {0, 1, 2}, so selector will take values between 0 and 7 (inclusive), which in binary are:

000 # 0
001 # 1
010 # 2
011 # 3
100 # 4
101 # 5
110 # 6
111 # 7

So, each bit could serve as an indicator if an element of the original set should be added or not. Look at the binary numbers, and just think of each number as an element of the super set in which 1 means that an element at index j should be added, and 0 means that this element should not be added.

I am using a set comprehension to generate a subset at each iteration, and I convert this subset into a frozenset so I can add it to ps (power set). Otherwise, I won't be able to add it because a set in Python consists only of immutable objects.

Simplification

You can simplify the code using some python comprehensions, so you can get rid of those for loops. You can also use zip to avoid using j index and the code will end up as the following:

def power_set(A):
    length = len(A)
    return {
        frozenset({e for e, b in zip(A, f'{i:{length}b}') if b == '1'})
        for i in range(2 ** length)
    }

That's it. What I like of this algorithm is that is clearer and more intuitive than others because it looks quite magical to rely on itertools even though it works as expected.

我为君王 2024-08-12 09:50:28

这可以通过 itertools.product 非常自然地完成:

import itertools

def powerset(l):
    for sl in itertools.product(*[[[], [i]] for i in l]):
        yield {j for i in sl for j in i}

This can be done very naturally with itertools.product:

import itertools

def powerset(l):
    for sl in itertools.product(*[[[], [i]] for i in l]):
        yield {j for i in sl for j in i}
魔法唧唧 2024-08-12 09:50:28
def get_power_set(s):
  power_set=[[]]
  for elem in s:
    # iterate over the sub sets so far
    for sub_set in power_set:
      # add a new subset consisting of the subset at hand added elem to it
      # effectively doubling the sets resulting in the 2^n sets in the powerset of s.
      power_set=power_set+[list(sub_set)+[elem]]
  return power_set

例如:

get_power_set([1,2,3])

产量

[[], [1], [2], [1, 2], [3], [1, 3], [2, 3], [1, 2, 3]]
def get_power_set(s):
  power_set=[[]]
  for elem in s:
    # iterate over the sub sets so far
    for sub_set in power_set:
      # add a new subset consisting of the subset at hand added elem to it
      # effectively doubling the sets resulting in the 2^n sets in the powerset of s.
      power_set=power_set+[list(sub_set)+[elem]]
  return power_set

For example:

get_power_set([1,2,3])

yield

[[], [1], [2], [1, 2], [3], [1, 3], [2, 3], [1, 2, 3]]
初雪 2024-08-12 09:50:28

我知道这已经太晚了

已经有很多其他解决方案但仍然......

def power_set(lst):
    pw_set = [[]]

    for i in range(0,len(lst)):
        for j in range(0,len(pw_set)):
            ele = pw_set[j].copy()
            ele = ele + [lst[i]]
            pw_set = pw_set + [ele]

    return pw_set

I know this is too late

There are many other solutions already but still...

def power_set(lst):
    pw_set = [[]]

    for i in range(0,len(lst)):
        for j in range(0,len(pw_set)):
            ele = pw_set[j].copy()
            ele = ele + [lst[i]]
            pw_set = pw_set + [ele]

    return pw_set
潜移默化 2024-08-12 09:50:28

我只是想提供最易于理解的解决方案,即反代码高尔夫版本。

from itertools import combinations

l = ["x", "y", "z", ]

def powerset(items):
    combo = []
    for r in range(len(items) + 1):
        #use a list to coerce a actual list from the combinations generator
        combo.append(list(combinations(items,r)))
    return combo

l_powerset = powerset(l)

for i, item in enumerate(l_powerset):
    print "All sets of length ", i
    print item

结果

所有长度为 0 的集合

[()]

所有长度为 1 的集合

[('x',), ('y',), (' z',)]

长度为 2 的所有集合

[('x', 'y'), ('x', 'z'), ('y', 'z')]

所有长度为 3 的集合

[('x', 'y', 'z')]

了解更多 请参阅 itertools 文档,以及 电源组

I just wanted to provide the most comprehensible solution, the anti code-golf version.

from itertools import combinations

l = ["x", "y", "z", ]

def powerset(items):
    combo = []
    for r in range(len(items) + 1):
        #use a list to coerce a actual list from the combinations generator
        combo.append(list(combinations(items,r)))
    return combo

l_powerset = powerset(l)

for i, item in enumerate(l_powerset):
    print "All sets of length ", i
    print item

The results

All sets of length 0

[()]

All sets of length 1

[('x',), ('y',), ('z',)]

All sets of length 2

[('x', 'y'), ('x', 'z'), ('y', 'z')]

All sets of length 3

[('x', 'y', 'z')]

For more see the itertools docs, also the wikipedia entry on power sets

梓梦 2024-08-12 09:50:28

对于空集(它是所有子集的一部分),您可以使用:

def subsets(iterable):
    for n in range(len(iterable) + 1):
        yield from combinations(iterable, n)

With empty set, which is part of all the subsets, you could use:

def subsets(iterable):
    for n in range(len(iterable) + 1):
        yield from combinations(iterable, n)
提赋 2024-08-12 09:50:28
from itertools import combinations
def subsets(arr: set) -> list:
   subsets = []
   [subsets.extend(list(combinations(arr,n))) for n in range(len(arr))]
   return subsets 

a = {1,2,3}
print(subsets(a))

输出:

[(), (1,), (2,), (3,), (1, 2), (1, 3), (2, 3)]

对于排序的子集,我们可以这样做:

# sorted subsets
print(sorted(subsets(a)))

输出:

[(), (1,), (1, 2), (1, 3), (2,), (2, 3), (3,)]
from itertools import combinations
def subsets(arr: set) -> list:
   subsets = []
   [subsets.extend(list(combinations(arr,n))) for n in range(len(arr))]
   return subsets 

a = {1,2,3}
print(subsets(a))

Output:

[(), (1,), (2,), (3,), (1, 2), (1, 3), (2, 3)]

For sorted subsets, we can do:

# sorted subsets
print(sorted(subsets(a)))

Output:

[(), (1,), (1, 2), (1, 3), (2,), (2, 3), (3,)]
不忘初心 2024-08-12 09:50:28
def powerSet(s):
    sets = [[]]
    for i in s:
        newsets = []
        for k in sets:
            newsets.append(k+[i])
        sets += newsets
    return sets

代码优先,适合那些想要简单答案的人。
我在这里有一个很好的解释 https://leetcode.com/problems /subsets/solutions/3138042/simple-python-solution/

但简短的答案是,您从空集的集合开始,即“sets = [[]]”。我建议在“for i in s”下放置一个 print 语句,即“print(sets)”,并看到它对于每个元素 i 都加倍

def powerSet(s):
    sets = [[]]
    for i in s:
        newsets = []
        for k in sets:
            newsets.append(k+[i])
        sets += newsets
    return sets

Code first, for those who want a simple answer.
I have a good explanation here https://leetcode.com/problems/subsets/solutions/3138042/simple-python-solution/

But the short answer is that you start with the set of the empty set, i.e. "sets = [[]]". I recommend to put a print a statement under "for i in s" i.e. "print(sets)" and see that it doubles for each element i

指尖微凉心微凉 2024-08-12 09:50:28

只是快速回顾一下电源设置!

集合 X 的幂集,就是 X 的所有子集的集合,包括
空集

示例集 X = (a,b,c)

幂集 = { { a , b , c } , { a , b } , { a , c } , { b , c } , { a } , { b } , { c } , { } }

这是查找幂集的另一种方法:

def power_set(input):
    # returns a list of all subsets of the list a
    if (len(input) == 0):
        return [[]]
    else:
        main_subset = [ ]
        for small_subset in power_set(input[1:]):
            main_subset += [small_subset]
            main_subset += [[input[0]] + small_subset]
        return main_subset

print(power_set([0,1,2,3]))

完全归功于 来源

Just a quick power set refresher !

Power set of a set X, is simply the set of all subsets of X including
the empty set

Example set X = (a,b,c)

Power Set = { { a , b , c } , { a , b } , { a , c } , { b , c } , { a } , { b } , { c } , { } }

Here is another way of finding power set:

def power_set(input):
    # returns a list of all subsets of the list a
    if (len(input) == 0):
        return [[]]
    else:
        main_subset = [ ]
        for small_subset in power_set(input[1:]):
            main_subset += [small_subset]
            main_subset += [[input[0]] + small_subset]
        return main_subset

print(power_set([0,1,2,3]))

full credit to source

紙鸢 2024-08-12 09:50:28

如果您想要任何特定长度的子集,您可以这样做:

from itertools import combinations
someSet = {0, 1, 2, 3}
([x for i in range(len(someSet)+1) for x in combinations(someSet,i)])

更一般地,对于任意长度的子集,您可以修改范围参数。输出为

[(), (0,), (1,), (2,), (3,), (0, 1), (0, 2), (0, 3), (1, 2) , (1, 3), (2, 3), (0, 1, 2), (0, 1, 3), (0, 2, 3), (1, 2, 3), (0, 1, 2, 3)]

If you want any specific length of subsets you can do it like this:

from itertools import combinations
someSet = {0, 1, 2, 3}
([x for i in range(len(someSet)+1) for x in combinations(someSet,i)])

More generally for arbitary length subsets you can modify the range arugment. The output is

[(), (0,), (1,), (2,), (3,), (0, 1), (0, 2), (0, 3), (1, 2), (1, 3), (2, 3), (0, 1, 2), (0, 1, 3), (0, 2, 3), (1, 2, 3), (0, 1, 2, 3)]

乜一 2024-08-12 09:50:28

你可以这样做:

def powerset(x):
    m=[]
    if not x:
        m.append(x)
    else:
        A = x[0]
        B = x[1:]
        for z in powerset(B):
            m.append(z)
            r = [A] + z
            m.append(r)
    return m

print(powerset([1, 2, 3, 4]))

输出:

[[], [1], [2], [1, 2], [3], [1, 3], [2, 3], [1, 2, 3], [4], [1, 4], [2, 4], [1, 2, 4], [3, 4], [1, 3, 4], [2, 3, 4], [1, 2, 3, 4]]

You can do it like this:

def powerset(x):
    m=[]
    if not x:
        m.append(x)
    else:
        A = x[0]
        B = x[1:]
        for z in powerset(B):
            m.append(z)
            r = [A] + z
            m.append(r)
    return m

print(powerset([1, 2, 3, 4]))

Output:

[[], [1], [2], [1, 2], [3], [1, 3], [2, 3], [1, 2, 3], [4], [1, 4], [2, 4], [1, 2, 4], [3, 4], [1, 3, 4], [2, 3, 4], [1, 2, 3, 4]]
莫言歌 2024-08-12 09:50:28

一种简单的方法是利用 2 的补码算术下整数的内部表示。

对于从 0 到 7 的数字,整数的二进制表示形式为 {000, 001, 010, 011, 100, 101, 110, 111}。对于整数计数器值,将 1 视为包含在集合中的相应元素,将 '0' 视为包含作为排除,我们可以根据计数序列生成子集。必须生成从 0pow(2,n) -1 的数字,其中 n 是数组的长度,即二进制表示的位数。

基于它的简单的子集生成器函数可以写成如下。它基本上依赖

def subsets(array):
    if not array:
        return
    else:
        length = len(array)
        for max_int in range(0x1 << length):
            subset = []
            for i in range(length):
                if max_int & (0x1 << i):
                    subset.append(array[i])
            yield subset

,然后可以用作

def get_subsets(array):
    powerset = []
    for i in subsets(array):
        powerser.append(i)
    return powerset

测试

在本地文件中添加以下内容

if __name__ == '__main__':
    sample = ['b',  'd',  'f']

    for i in range(len(sample)):
        print "Subsets for " , sample[i:], " are ", get_subsets(sample[i:])

给出以下输出

Subsets for  ['b', 'd', 'f']  are  [[], ['b'], ['d'], ['b', 'd'], ['f'], ['b', 'f'], ['d', 'f'], ['b', 'd', 'f']]
Subsets for  ['d', 'f']  are  [[], ['d'], ['f'], ['d', 'f']]
Subsets for  ['f']  are  [[], ['f']]

A simple way would be to harness the internal representation of integers under 2's complement arithmetic.

Binary representation of integers is as {000, 001, 010, 011, 100, 101, 110, 111} for numbers ranging from 0 to 7. For an integer counter value, considering 1 as inclusion of corresponding element in collection and '0' as exclusion we can generate subsets based on the counting sequence. Numbers have to be generated from 0 to pow(2,n) -1 where n is the length of array i.e. number of bits in binary representation.

A simple Subset Generator Function based on it can be written as below. It basically relies

def subsets(array):
    if not array:
        return
    else:
        length = len(array)
        for max_int in range(0x1 << length):
            subset = []
            for i in range(length):
                if max_int & (0x1 << i):
                    subset.append(array[i])
            yield subset

and then it can be used as

def get_subsets(array):
    powerset = []
    for i in subsets(array):
        powerser.append(i)
    return powerset

Testing

Adding following in local file

if __name__ == '__main__':
    sample = ['b',  'd',  'f']

    for i in range(len(sample)):
        print "Subsets for " , sample[i:], " are ", get_subsets(sample[i:])

gives following output

Subsets for  ['b', 'd', 'f']  are  [[], ['b'], ['d'], ['b', 'd'], ['f'], ['b', 'f'], ['d', 'f'], ['b', 'd', 'f']]
Subsets for  ['d', 'f']  are  [[], ['d'], ['f'], ['d', 'f']]
Subsets for  ['f']  are  [[], ['f']]
安静 2024-08-12 09:50:28

几乎所有这些答案都使用 list 而不是 set,这对我来说有点作弊。因此,出于好奇,我尝试在 set 上真正做一个简单的版本,并为其他“Python 新手”人员进行总结。

我发现处理 Python 的 set 实现 时有一些奇怪的地方。对我来说主要的惊喜是处理空集。这与 Ruby 的 Set 实现,我可以简单地执行 Set[Set[]] 并获取一个包含一个空 SetSet,所以我最初发现它有点令人困惑。

回顾一下,在使用 set 执行 powerset 时,我遇到了两个问题:

  1. set() 需要一个可迭代对象,因此 set(set ()) 将返回 set() 因为空集可迭代是空(我猜是:))
  2. 要获取一组集合,set({set()} )set.add(set) 不起作用,因为 set() 不可散列

为了解决这两个问题,我使用了 frozenset(),这意味着我不太明白我想要的(类型实际上是 set),但利用了整体 set 接口。

def powerset(original_set):
  # below gives us a set with one empty set in it
  ps = set({frozenset()}) 
  for member in original_set:
    subset = set()
    for m in ps:
      # to be added into subset, needs to be
      # frozenset.union(set) so it's hashable
      subset.add(m.union(set([member]))
    ps = ps.union(subset)
  return ps

下面我们正确地得到 2² (16) 个 frozenset 作为输出:

In [1]: powerset(set([1,2,3,4]))
Out[2]:
{frozenset(),
 frozenset({3, 4}),
 frozenset({2}),
 frozenset({1, 4}),
 frozenset({3}),
 frozenset({2, 3}),
 frozenset({2, 3, 4}),
 frozenset({1, 2}),
 frozenset({2, 4}),
 frozenset({1}),
 frozenset({1, 2, 4}),
 frozenset({1, 3}),
 frozenset({1, 2, 3}),
 frozenset({4}),
 frozenset({1, 3, 4}),
 frozenset({1, 2, 3, 4})}

因为在 Python 中没有办法拥有 setset,如果你想要将这些 frozenset 转换为 set,您必须将它们映射回 list (list(map(设置,幂集(设置([1,2,3,4]))))
)或修改上面的内容。

Almost all of these answers use list rather than set, which felt like a bit of a cheat to me. So, out of curiosity I tried to do a simple version truly on set and summarize for other "new to Python" folks.

I found there's a couple oddities in dealing with Python's set implementation. The main surprise to me was handling empty sets. This is in contrast to Ruby's Set implementation, where I can simply do Set[Set[]] and get a Set containing one empty Set, so I found it initially a little confusing.

To review, in doing powerset with sets, I encountered two problems:

  1. set() takes an iterable, so set(set()) will return set() because the empty set iterable is empty (duh I guess :))
  2. to get a set of sets, set({set()}) and set.add(set) won't work because set() isn't hashable

To solve both issues, I made use of frozenset(), which means I don't quite get what I want (type is literally set), but makes use of the overall set interace.

def powerset(original_set):
  # below gives us a set with one empty set in it
  ps = set({frozenset()}) 
  for member in original_set:
    subset = set()
    for m in ps:
      # to be added into subset, needs to be
      # frozenset.union(set) so it's hashable
      subset.add(m.union(set([member]))
    ps = ps.union(subset)
  return ps

Below we get 2² (16) frozensets correctly as output:

In [1]: powerset(set([1,2,3,4]))
Out[2]:
{frozenset(),
 frozenset({3, 4}),
 frozenset({2}),
 frozenset({1, 4}),
 frozenset({3}),
 frozenset({2, 3}),
 frozenset({2, 3, 4}),
 frozenset({1, 2}),
 frozenset({2, 4}),
 frozenset({1}),
 frozenset({1, 2, 4}),
 frozenset({1, 3}),
 frozenset({1, 2, 3}),
 frozenset({4}),
 frozenset({1, 3, 4}),
 frozenset({1, 2, 3, 4})}

As there's no way to have a set of sets in Python, if you want to turn these frozensets into sets, you'll have to map them back into a list (list(map(set, powerset(set([1,2,3,4]))))
) or modify the above.

极致的悲 2024-08-12 09:50:28

也许这个问题已经过时了,但我希望我的代码能帮助别人。

def powSet(set):
    if len(set) == 0:
       return [[]]
    return addtoAll(set[0],powSet(set[1:])) + powSet(set[1:])

def addtoAll(e, set):
   for c in set:
       c.append(e)
   return set

Perhaps the question is getting old, but I hope my code will help someone.

def powSet(set):
    if len(set) == 0:
       return [[]]
    return addtoAll(set[0],powSet(set[1:])) + powSet(set[1:])

def addtoAll(e, set):
   for c in set:
       c.append(e)
   return set
小镇女孩 2024-08-12 09:50:28

通过递归获取所有子集。疯狂的一句话

from typing import List

def subsets(xs: list) -> List[list]:
    return subsets(xs[1:]) + [x + [xs[0]] for x in subsets(xs[1:])] if xs else [[]]

基于 Haskell 解决方案

subsets :: [a] -> [[a]]
subsets [] = [[]]
subsets (x:xs) = map (x:) (subsets xs) ++ subsets xs

Getting all the subsets with recursion. Crazy-ass one-liner

from typing import List

def subsets(xs: list) -> List[list]:
    return subsets(xs[1:]) + [x + [xs[0]] for x in subsets(xs[1:])] if xs else [[]]

Based on a Haskell solution

subsets :: [a] -> [[a]]
subsets [] = [[]]
subsets (x:xs) = map (x:) (subsets xs) ++ subsets xs
老娘不死你永远是小三 2024-08-12 09:50:28
def findsubsets(s, n): 
    return list(itertools.combinations(s, n)) 

def allsubsets(s) :
    a = []
    for x in range(1,len(s)+1):
        a.append(map(set,findsubsets(s,x)))      
    return a
def findsubsets(s, n): 
    return list(itertools.combinations(s, n)) 

def allsubsets(s) :
    a = []
    for x in range(1,len(s)+1):
        a.append(map(set,findsubsets(s,x)))      
    return a
回忆追雨的时光 2024-08-12 09:50:28

这很疯狂,因为这些答案实际上都没有提供实际 Python 集的返回。这是一个混乱的实现,它将提供一个实际上是 Python set 的幂集。

test_set = set(['yo', 'whatup', 'money'])
def powerset( base_set ):
    """ modified from pydoc's itertools recipe shown above"""
    from itertools import chain, combinations
    base_list = list( base_set )
    combo_list = [ combinations(base_list, r) for r in range(len(base_set)+1) ]

    powerset = set([])
    for ll in combo_list:
        list_of_frozensets = list( map( frozenset, map( list, ll ) ) ) 
        set_of_frozensets = set( list_of_frozensets )
        powerset = powerset.union( set_of_frozensets )

    return powerset

print powerset( test_set )
# >>> set([ frozenset(['money','whatup']), frozenset(['money','whatup','yo']), 
#        frozenset(['whatup']), frozenset(['whatup','yo']), frozenset(['yo']),
#        frozenset(['money','yo']), frozenset(['money']), frozenset([]) ])

不过,我希望看到更好的实施。

This is wild because none of these answers actually provide the return of an actual Python set. Here is a messy implementation that will give a powerset that actually is a Python set.

test_set = set(['yo', 'whatup', 'money'])
def powerset( base_set ):
    """ modified from pydoc's itertools recipe shown above"""
    from itertools import chain, combinations
    base_list = list( base_set )
    combo_list = [ combinations(base_list, r) for r in range(len(base_set)+1) ]

    powerset = set([])
    for ll in combo_list:
        list_of_frozensets = list( map( frozenset, map( list, ll ) ) ) 
        set_of_frozensets = set( list_of_frozensets )
        powerset = powerset.union( set_of_frozensets )

    return powerset

print powerset( test_set )
# >>> set([ frozenset(['money','whatup']), frozenset(['money','whatup','yo']), 
#        frozenset(['whatup']), frozenset(['whatup','yo']), frozenset(['yo']),
#        frozenset(['money','yo']), frozenset(['money']), frozenset([]) ])

I'd love to see a better implementation, though.

手心的温暖 2024-08-12 09:50:28

这是我使用组合但仅使用内置函数的快速实现。

def powerSet(array):
    length = str(len(array))
    formatter = '{:0' + length + 'b}'
    combinations = []
    for i in xrange(2**int(length)):
        combinations.append(formatter.format(i))
    sets = set()
    currentSet = []
    for combo in combinations:
        for i,val in enumerate(combo):
            if val=='1':
                currentSet.append(array[i])
        sets.add(tuple(sorted(currentSet)))
        currentSet = []
    return sets

Here is my quick implementation utilizing combinations but using only built-ins.

def powerSet(array):
    length = str(len(array))
    formatter = '{:0' + length + 'b}'
    combinations = []
    for i in xrange(2**int(length)):
        combinations.append(formatter.format(i))
    sets = set()
    currentSet = []
    for combo in combinations:
        for i,val in enumerate(combo):
            if val=='1':
                currentSet.append(array[i])
        sets.add(tuple(sorted(currentSet)))
        currentSet = []
    return sets
粉红×色少女 2024-08-12 09:50:28

范围 n 内的所有子集已设置:

n = int(input())
l = [i for i in range (1, n + 1)]

for number in range(2 ** n) :
    binary = bin(number)[: 1 : -1]
    subset = [l[i] for i in range(len(binary)) if binary[i] == "1"]
    print(set(sorted(subset)) if number > 0 else "{}")

All subsets in range n as set:

n = int(input())
l = [i for i in range (1, n + 1)]

for number in range(2 ** n) :
    binary = bin(number)[: 1 : -1]
    subset = [l[i] for i in range(len(binary)) if binary[i] == "1"]
    print(set(sorted(subset)) if number > 0 else "{}")
孤独难免 2024-08-12 09:50:28
import math    
def printPowerSet(set,set_size): 
    pow_set_size =int(math.pow(2, set_size))
    for counter in range(pow_set_size):
    for j in range(set_size):  
        if((counter & (1 << j)) > 0):
            print(set[j], end = "")
    print("")
set = ['a', 'b', 'c']
printPowerSet(set,3)
import math    
def printPowerSet(set,set_size): 
    pow_set_size =int(math.pow(2, set_size))
    for counter in range(pow_set_size):
    for j in range(set_size):  
        if((counter & (1 << j)) > 0):
            print(set[j], end = "")
    print("")
set = ['a', 'b', 'c']
printPowerSet(set,3)
路弥 2024-08-12 09:50:28

这个问题的一个变体是我在《发现计算机科学:跨学科问题、原理和 Python 编程。2015 版》一书中看到的一个练习。在练习 10.2.11 中,输入只是一个整数,输出应该是幂集。这是我的递归解决方案(除了基本 python3 之外不使用其他任何东西)

def powerSetR(n):
    assert n >= 0
    if n == 0:
        return [[]]
    else:
        input_set = list(range(1, n+1)) # [1,2,...n]
        main_subset = [ ]
        for small_subset in powerSetR(n-1):
            main_subset += [small_subset]
            main_subset += [ [input_set[-1]] + small_subset]
        return main_subset

superset = powerSetR(4)
print(superset)       
print("Number of sublists:", len(superset))

输出是

[[], [4], [3], [4, 3], [2], [4, 2], [3, 2 ], [4, 3, 2], [1], [4, 1], [3, 1], [4, 3, 1], [2, 1], [4, 2, 1], [3 , 2, 1], [4, 3, 2, 1]]
子列表数量:16

A variation of the question, is an exercise I see on the book "Discovering Computer Science: Interdisciplinary Problems, Principles, and Python Programming. 2015 edition". In that exercise 10.2.11, the input is just an integer number, and the output should be the power sets. Here is my recursive solution (not using anything else but basic python3 )

def powerSetR(n):
    assert n >= 0
    if n == 0:
        return [[]]
    else:
        input_set = list(range(1, n+1)) # [1,2,...n]
        main_subset = [ ]
        for small_subset in powerSetR(n-1):
            main_subset += [small_subset]
            main_subset += [ [input_set[-1]] + small_subset]
        return main_subset

superset = powerSetR(4)
print(superset)       
print("Number of sublists:", len(superset))

And the output is

[[], [4], [3], [4, 3], [2], [4, 2], [3, 2], [4, 3, 2], [1], [4, 1], [3, 1], [4, 3, 1], [2, 1], [4, 2, 1], [3, 2, 1], [4, 3, 2, 1]]
Number of sublists: 16

今天小雨转甜 2024-08-12 09:50:28

我没有遇到过 more_itertools.powerset 函数,建议使用它。我还建议不要使用 itertools.combinations 输出的默认排序,相反,您通常希望最小化位置之间的距离并对距离较短的项目子集进行排序它们之间的距离较大的项目上方/之前。

itertools 食谱页面显示它使用 chain.from_iterable

  • 请注意,这里的 r二项式系数s 在数学课本和计算器中通常称为 n(“n 选择 r ”)
def powerset(iterable):
    "powerset([1,2,3]) --> () (1,) (2,) (3,) (1,2) (1,3) (2,3) (1,2,3)"
    s = list(iterable)
    return chain.from_iterable(combinations(s, r) for r in range(len(s)+1))

这里的其他示例给出了 [1,2,3,4] 的幂集,其方式是 2 元组按“字典顺序”列出(当我们将数字打印为整数时) )。如果我在旁边写下数字之间的距离(即差异),它就会显示我的观点:

12 ⇒ 1
13 ⇒ 2
14 ⇒ 3
23 ⇒ 1
24 ⇒ 2
34 ⇒ 1

子集的正确顺序应该是首先“耗尽”最小距离的顺序,如下所示:

12 ⇒ 1
23 ⇒ 1
34 ⇒ 1
13 ⇒ 2
24 ⇒ 2
14 ⇒ 3

在这里使用数字使此排序看起来“ ',但考虑例如字母 ["a","b","c","d"] 更清楚为什么这可能有助于按此顺序获取幂集:

ab ⇒ 1
bc ⇒ 1
cd ⇒ 1
ac ⇒ 2
bd ⇒ 2
ad ⇒ 3

错误 项目越多,效果越明显,并且就我的目的而言,它使得能够有意义地描述幂集索引范围之间存在差异。

格雷码等上写了很多关于组合数学中算法的输出顺序的内容,我不认为这是一个次要问题)。

实际上,我只是编写了一个相当复杂的程序,它使用这个快速整数分区代码以正确的顺序输出值,但后来我发现了 more_itertools.powerset 并且对于大多数用途来说,只使用该函数可能就可以了像这样:

from more_itertools import powerset
from numpy import ediff1d

def ps_sorter(tup):
    l = len(tup)
    d = ediff1d(tup).tolist()
    return l, d

ps = powerset([1,2,3,4])

ps = sorted(ps, key=ps_sorter)

for x in ps:
    print(x)

()
(1,)
(2,)
(3,)
(4,)
(1, 2)
(2, 3)
(3, 4)
(1, 3)
(2, 4)
(1, 4)
(1, 2, 3)
(2, 3, 4)
(1, 2, 4)
(1, 3, 4)
(1, 2, 3, 4)

我编写了一些更复杂的代码,可以很好地打印幂集(请参阅存储库以获取我未包含在此处的漂亮打印函数:print_partitionsprint_partitions_by_lengthpprint_tuple)。

这一切都非常简单,但如果您想要一些,仍然可能有用让您直接访问不同级别的 powerset 的代码:

from itertools import permutations as permute
from numpy import cumsum

# http://jeromekelleher.net/generating-integer-partitions.html
# via
# https://stackoverflow.com/questions/10035752/elegant-python-code-for-integer-partitioning#comment25080713_10036764

def asc_int_partitions(n):
    a = [0 for i in range(n + 1)]
    k = 1
    y = n - 1
    while k != 0:
        x = a[k - 1] + 1
        k -= 1
        while 2 * x <= y:
            a[k] = x
            y -= x
            k += 1
        l = k + 1
        while x <= y:
            a[k] = x
            a[l] = y
            yield tuple(a[:k + 2])
            x += 1
            y -= 1
        a[k] = x + y
        y = x + y - 1
        yield tuple(a[:k + 1])

# https://stackoverflow.com/a/6285330/2668831
def uniquely_permute(iterable, enforce_sort=False, r=None):
    previous = tuple()
    if enforce_sort: # potential waste of effort (default: False)
        iterable = sorted(iterable)
    for p in permute(iterable, r):
        if p > previous:
            previous = p
            yield p

def sum_min(p):
    return sum(p), min(p)

def partitions_by_length(max_n, sorting=True, permuting=False):
    partition_dict = {0: ()}
    for n in range(1,max_n+1):
        partition_dict.setdefault(n, [])
        partitions = list(asc_int_partitions(n))
        for p in partitions:
            if permuting:
                perms = uniquely_permute(p)
                for perm in perms:
                    partition_dict.get(len(p)).append(perm)
            else:
                partition_dict.get(len(p)).append(p)
    if not sorting:
        return partition_dict
    for k in partition_dict:
        partition_dict.update({k: sorted(partition_dict.get(k), key=sum_min)})
    return partition_dict

def print_partitions_by_length(max_n, sorting=True, permuting=True):
    partition_dict = partitions_by_length(max_n, sorting=sorting, permuting=permuting)
    for k in partition_dict:
        if k == 0:
            print(tuple(partition_dict.get(k)), end="")
        for p in partition_dict.get(k):
            print(pprint_tuple(p), end=" ")
        print()
    return

def generate_powerset(items, subset_handler=tuple, verbose=False):
    """
    Generate the powerset of an iterable `items`.

    Handling of the elements of the iterable is by whichever function is passed as
    `subset_handler`, which must be able to handle the `None` value for the
    empty set. The function `string_handler` will join the elements of the subset
    with the empty string (useful when `items` is an iterable of `str` variables).
    """
    ps = {0: [subset_handler()]}
    n = len(items)
    p_dict = partitions_by_length(n-1, sorting=True, permuting=True)
    for p_len, parts in p_dict.items():
        ps.setdefault(p_len, [])
        if p_len == 0:
            # singletons
            for offset in range(n):
                subset = subset_handler([items[offset]])
                if verbose:
                    if offset > 0:
                        print(end=" ")
                    if offset == n - 1:
                        print(subset, end="\n")
                    else:
                        print(subset, end=",")
                ps.get(p_len).append(subset)
        for pcount, partition in enumerate(parts):
            distance = sum(partition)
            indices = (cumsum(partition)).tolist()
            for offset in range(n - distance):
                subset = subset_handler([items[offset]] + [items[offset:][i] for i in indices])
                if verbose:
                    if offset > 0:
                        print(end=" ")
                    if offset == n - distance - 1:
                        print(subset, end="\n")
                    else:
                        print(subset, end=",")
                ps.get(p_len).append(subset)
        if verbose and p_len < n-1:
            print()
    return ps

作为示例,我编写了一个 CLI 演示程序,它将字符串作为命令行参数:

python string_powerset.py abcdef

a, b, c, d, e, f

ab, bc, cd, de, ef
ac, bd, ce, df
ad, be, cf
ae, bf
af

abc, bcd, cde, def
abd, bce, cdf
acd, bde, cef
abe, bcf
ade, bef
ace, bdf
abf
aef
acf
adf

abcd, bcde, cdef
abce, bcdf
abde, bcef
acde, bdef
abcf
abef
adef
abdf
acdf
acef

abcde, bcdef
abcdf
abcef
abdef
acdef

abcdef

I hadn't come across the more_itertools.powerset function and would recommend using that. I also recommend not using the default ordering of the output from itertools.combinations, often instead you want to minimise the distance between the positions and sort the subsets of items with shorter distance between them above/before the items with larger distance between them.

The itertools recipes page shows it uses chain.from_iterable

  • Note that the r here matches the standard notation for the lower part of a binomial coefficient, the s is usually referred to as n in mathematics texts and on calculators (“n Choose r”)
def powerset(iterable):
    "powerset([1,2,3]) --> () (1,) (2,) (3,) (1,2) (1,3) (2,3) (1,2,3)"
    s = list(iterable)
    return chain.from_iterable(combinations(s, r) for r in range(len(s)+1))

The other examples here give the powerset of [1,2,3,4] in such a way that the 2-tuples are listed in "lexicographic" order (when we print the numbers as integers). If I write the distance between the numbers alongside it (i.e. the difference), it shows my point:

12 ⇒ 1
13 ⇒ 2
14 ⇒ 3
23 ⇒ 1
24 ⇒ 2
34 ⇒ 1

The correct order for subsets should be the order which 'exhausts' the minimal distance first, like so:

12 ⇒ 1
23 ⇒ 1
34 ⇒ 1
13 ⇒ 2
24 ⇒ 2
14 ⇒ 3

Using numbers here makes this ordering look 'wrong', but consider for example the letters ["a","b","c","d"] it is clearer why this might be useful to obtain the powerset in this order:

ab ⇒ 1
bc ⇒ 1
cd ⇒ 1
ac ⇒ 2
bd ⇒ 2
ad ⇒ 3

This effect is more pronounced with more items, and for my purposes it makes the difference between being able to describe the ranges of the indexes of the powerset meaningfully.

(There is a lot written on Gray codes etc. for the output order of algorithms in combinatorics, I don't see it as a side issue).

I actually just wrote a fairly involved program which used this fast integer partition code to output the values in the proper order, but then I discovered more_itertools.powerset and for most uses it's probably fine to just use that function like so:

from more_itertools import powerset
from numpy import ediff1d

def ps_sorter(tup):
    l = len(tup)
    d = ediff1d(tup).tolist()
    return l, d

ps = powerset([1,2,3,4])

ps = sorted(ps, key=ps_sorter)

for x in ps:
    print(x)

()
(1,)
(2,)
(3,)
(4,)
(1, 2)
(2, 3)
(3, 4)
(1, 3)
(2, 4)
(1, 4)
(1, 2, 3)
(2, 3, 4)
(1, 2, 4)
(1, 3, 4)
(1, 2, 3, 4)

I wrote some more involved code which will print the powerset nicely (see the repo for pretty printing functions I've not included here: print_partitions, print_partitions_by_length, and pprint_tuple).

This is all pretty simple, but still might be useful if you want some code that'll let you get straight to accessing the different levels of the powerset:

from itertools import permutations as permute
from numpy import cumsum

# http://jeromekelleher.net/generating-integer-partitions.html
# via
# https://stackoverflow.com/questions/10035752/elegant-python-code-for-integer-partitioning#comment25080713_10036764

def asc_int_partitions(n):
    a = [0 for i in range(n + 1)]
    k = 1
    y = n - 1
    while k != 0:
        x = a[k - 1] + 1
        k -= 1
        while 2 * x <= y:
            a[k] = x
            y -= x
            k += 1
        l = k + 1
        while x <= y:
            a[k] = x
            a[l] = y
            yield tuple(a[:k + 2])
            x += 1
            y -= 1
        a[k] = x + y
        y = x + y - 1
        yield tuple(a[:k + 1])

# https://stackoverflow.com/a/6285330/2668831
def uniquely_permute(iterable, enforce_sort=False, r=None):
    previous = tuple()
    if enforce_sort: # potential waste of effort (default: False)
        iterable = sorted(iterable)
    for p in permute(iterable, r):
        if p > previous:
            previous = p
            yield p

def sum_min(p):
    return sum(p), min(p)

def partitions_by_length(max_n, sorting=True, permuting=False):
    partition_dict = {0: ()}
    for n in range(1,max_n+1):
        partition_dict.setdefault(n, [])
        partitions = list(asc_int_partitions(n))
        for p in partitions:
            if permuting:
                perms = uniquely_permute(p)
                for perm in perms:
                    partition_dict.get(len(p)).append(perm)
            else:
                partition_dict.get(len(p)).append(p)
    if not sorting:
        return partition_dict
    for k in partition_dict:
        partition_dict.update({k: sorted(partition_dict.get(k), key=sum_min)})
    return partition_dict

def print_partitions_by_length(max_n, sorting=True, permuting=True):
    partition_dict = partitions_by_length(max_n, sorting=sorting, permuting=permuting)
    for k in partition_dict:
        if k == 0:
            print(tuple(partition_dict.get(k)), end="")
        for p in partition_dict.get(k):
            print(pprint_tuple(p), end=" ")
        print()
    return

def generate_powerset(items, subset_handler=tuple, verbose=False):
    """
    Generate the powerset of an iterable `items`.

    Handling of the elements of the iterable is by whichever function is passed as
    `subset_handler`, which must be able to handle the `None` value for the
    empty set. The function `string_handler` will join the elements of the subset
    with the empty string (useful when `items` is an iterable of `str` variables).
    """
    ps = {0: [subset_handler()]}
    n = len(items)
    p_dict = partitions_by_length(n-1, sorting=True, permuting=True)
    for p_len, parts in p_dict.items():
        ps.setdefault(p_len, [])
        if p_len == 0:
            # singletons
            for offset in range(n):
                subset = subset_handler([items[offset]])
                if verbose:
                    if offset > 0:
                        print(end=" ")
                    if offset == n - 1:
                        print(subset, end="\n")
                    else:
                        print(subset, end=",")
                ps.get(p_len).append(subset)
        for pcount, partition in enumerate(parts):
            distance = sum(partition)
            indices = (cumsum(partition)).tolist()
            for offset in range(n - distance):
                subset = subset_handler([items[offset]] + [items[offset:][i] for i in indices])
                if verbose:
                    if offset > 0:
                        print(end=" ")
                    if offset == n - distance - 1:
                        print(subset, end="\n")
                    else:
                        print(subset, end=",")
                ps.get(p_len).append(subset)
        if verbose and p_len < n-1:
            print()
    return ps

As an example, I wrote a CLI demo program which takes a string as a command line argument:

python string_powerset.py abcdef

a, b, c, d, e, f

ab, bc, cd, de, ef
ac, bd, ce, df
ad, be, cf
ae, bf
af

abc, bcd, cde, def
abd, bce, cdf
acd, bde, cef
abe, bcf
ade, bef
ace, bdf
abf
aef
acf
adf

abcd, bcde, cdef
abce, bcdf
abde, bcef
acde, bdef
abcf
abef
adef
abdf
acdf
acef

abcde, bcdef
abcdf
abcef
abdef
acdef

abcdef
醉南桥 2024-08-12 09:50:28

这是我的解决方案,它与 lmiguelvargasf 的解决方案(概念上)类似。

让我这么说
-[数学项] 根据定义,幂集确实包含空集
-[个人品味]而且我不喜欢使用frozenset。

所以输入是一个列表,输出将是一个列表的列表。该函数可以提前关闭,但我喜欢幂集的元素按字典顺序排列,这本质上意味着很好。

def power_set(L):
    """
    L is a list.
    The function returns the power set, but as a list of lists.
    """
    cardinality=len(L)
    n=2 ** cardinality
    powerset = []
    
    for i in range(n):
        a=bin(i)[2:]
        subset=[]
        for j in range(len(a)):
            if a[-j-1]=='1':
                subset.append(L[j])
        powerset.append(subset)
        
    #the function could stop here closing with
    #return powerset

    powerset_orderred=[]
    for k in range(cardinality+1):
        for w in powerset:
            if len(w)==k:
                powerset_orderred.append(w)
        
    return powerset_orderred

Here it is my solutions, it is similar (conceptually) with the solution of lmiguelvargasf.

Let me say that
-[math item] by defintion the powerset do contain the empty set
-[personal taste] and also that I don't like using frozenset.

So the input is a list and the output will be a list of lists. The function could close earlier, but I like the element of the power set to be order lexicographically, that essentially means nicely.

def power_set(L):
    """
    L is a list.
    The function returns the power set, but as a list of lists.
    """
    cardinality=len(L)
    n=2 ** cardinality
    powerset = []
    
    for i in range(n):
        a=bin(i)[2:]
        subset=[]
        for j in range(len(a)):
            if a[-j-1]=='1':
                subset.append(L[j])
        powerset.append(subset)
        
    #the function could stop here closing with
    #return powerset

    powerset_orderred=[]
    for k in range(cardinality+1):
        for w in powerset:
            if len(w)==k:
                powerset_orderred.append(w)
        
    return powerset_orderred
~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文