如何在 R 代码中使用异常值测试

发布于 2024-08-05 07:28:46 字数 103 浏览 9 评论 0原文

作为数据分析工作流程的一部分,我想测试异常值,然后在有或没有这些异常值的情况下进行进一步的计算。

我找到了异常值包,其中有各种测试,但我不确定如何最好地将它们用于我的工作流程。

As part of my data analysis workflow, I want to test for outliers, and then do my further calculation with and without those outliers.

I've found the outlier package, which has various tests, but I'm not sure how best to use them for my workflow.

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(4

℉絮湮 2024-08-12 07:28:46

如果您担心异常值,请使用稳健的方法,而不是将其丢弃。例如,使用 rlm 代替 lm。

If you're worried about outliers, instead on throwing them out, use a robust method. For example, instead of lm, use rlm.

来日方长 2024-08-12 07:28:46

我同意德克的观点,这很难。我建议首先看看为什么你可能会有异常值。异常值只是有人认为可疑的数字,它并不是具体的“坏”值,除非您能找到它成为异常值的原因,否则您可能不得不忍受这种不确定性。

您没有提到的一件事是您正在寻找什么样的异常值。您的数据是否围绕平均值聚集,它们是否具有特定的分布,或者您的数据之间是否存在某种关系。

这是一些示例

首先,我们将创建一些数据,然后用异常值来污染它;

> testout<-data.frame(X1=rnorm(50,mean=50,sd=10),X2=rnorm(50,mean=5,sd=1.5),Y=rnorm(50,mean=200,sd=25))
> #Taint the Data
> testout$X1[10]<-5
> testout$X2[10]<-5
> testout$Y[10]<-530

> testout
         X1         X2        Y
1  44.20043  1.5259458 169.3296
2  40.46721  5.8437076 200.9038
3  48.20571  3.8243373 189.4652
4  60.09808  4.6609190 177.5159
5  50.23627  2.6193455 210.4360
6  43.50972  5.8212863 203.8361
7  44.95626  7.8368405 236.5821
8  66.14391  3.6828843 171.9624
9  45.53040  4.8311616 187.0553
10  5.00000  5.0000000 530.0000
11 64.71719  6.4007245 164.8052
12 54.43665  7.8695891 192.8824
13 45.78278  4.9921489 182.2957
14 49.59998  4.7716099 146.3090
<snip>
48 26.55487  5.8082497 189.7901
49 45.28317  5.0219647 208.1318
50 44.84145  3.6252663 251.5620

以图形方式检查数据通常最有用(您的大脑比数学更擅长发现异常值),

> #Use Boxplot to Review the Data
> boxplot(testout$X1, ylab="X1")
> boxplot(testout$X2, ylab="X2")
> boxplot(testout$Y, ylab="Y")

然后您可以使用测试。如果测试返回截止值,或者可能是异常值的值,您可以使用 ifelse 将其删除

> #Use Outlier test to remove individual values
> testout$newX1<-ifelse(testout$X1==outlier(testout$X1),NA,testout$X1)
> testout
         X1         X2        Y    newX1
1  44.20043  1.5259458 169.3296 44.20043
2  40.46721  5.8437076 200.9038 40.46721
3  48.20571  3.8243373 189.4652 48.20571
4  60.09808  4.6609190 177.5159 60.09808
5  50.23627  2.6193455 210.4360 50.23627
6  43.50972  5.8212863 203.8361 43.50972
7  44.95626  7.8368405 236.5821 44.95626 
8  66.14391  3.6828843 171.9624 66.14391 
9  45.53040  4.8311616 187.0553 45.53040
10  5.00000  5.0000000 530.0000       NA 
11 64.71719  6.4007245 164.8052 64.71719 
12 54.43665  7.8695891 192.8824 54.43665 
13 45.78278  4.9921489 182.2957 45.78278 
14 49.59998  4.7716099 146.3090 49.59998 
15 45.07720  4.2355525 192.9041 45.07720 
16 62.27717  7.1518606 186.6482 62.27717 
17 48.50446  3.0712422 228.3253 48.50446 
18 65.49983  5.4609713 184.8983 65.49983 
19 44.38387  4.9305222 213.9378 44.38387 
20 43.52883  8.3777627 203.5657 43.52883 
<snip>
49 45.28317  5.0219647 208.1318 45.28317 
50 44.84145  3.6252663 251.5620 44.84145

或者对于更复杂的示例,您可以使用 stats 来计算临界截止值,此处使用 Lund 测试(请参阅 Lund ,RE 1975,“线性模型中离群值的近似检验表”,Technometrics,第 17 卷,第 4 期,第 473-476 页和 Prescott,P. 1975,“线性模型中离群值的近似检验”。 ,《技术计量学》,第 17 卷,第 1 期,第 129-132 页。)

> #Alternative approach using Lund Test
> lundcrit<-function(a, n, q) {
+ # Calculates a Critical value for Outlier Test according to Lund
+ # See Lund, R. E. 1975, "Tables for An Approximate Test for Outliers in Linear Models", Technometrics, vol. 17, no. 4, pp. 473-476.
+ # and Prescott, P. 1975, "An Approximate Test for Outliers in Linear Models", Technometrics, vol. 17, no. 1, pp. 129-132.
+ # a = alpha
+ # n = Number of data elements
+ # q = Number of independent Variables (including intercept)
+ F<-qf(c(1-(a/n)),df1=1,df2=n-q-1,lower.tail=TRUE)
+ crit<-((n-q)*F/(n-q-1+F))^0.5
+ crit
+ }

> testoutlm<-lm(Y~X1+X2,data=testout)

> testout$fitted<-fitted(testoutlm)

> testout$residual<-residuals(testoutlm)

> testout$standardresid<-rstandard(testoutlm)

> n<-nrow(testout)

> q<-length(testoutlm$coefficients)

> crit<-lundcrit(0.1,n,q)

> testout$Ynew<-ifelse(abs(testout$standardresid)>crit,NA,testout$Y)

> testout
         X1         X2        Y    newX1   fitted    residual standardresid
1  44.20043  1.5259458 169.3296 44.20043 209.8467 -40.5171222  -1.009507695
2  40.46721  5.8437076 200.9038 40.46721 231.9221 -31.0183107  -0.747624895
3  48.20571  3.8243373 189.4652 48.20571 203.4786 -14.0134646  -0.335955648
4  60.09808  4.6609190 177.5159 60.09808 169.6108   7.9050960   0.190908291
5  50.23627  2.6193455 210.4360 50.23627 194.3285  16.1075799   0.391537883
6  43.50972  5.8212863 203.8361 43.50972 222.6667 -18.8306252  -0.452070155
7  44.95626  7.8368405 236.5821 44.95626 223.3287  13.2534226   0.326339981
8  66.14391  3.6828843 171.9624 66.14391 148.8870  23.0754677   0.568829360
9  45.53040  4.8311616 187.0553 45.53040 214.0832 -27.0279262  -0.646090667
10  5.00000  5.0000000 530.0000       NA 337.0535 192.9465135   5.714275585
11 64.71719  6.4007245 164.8052 64.71719 159.9911   4.8141018   0.118618011
12 54.43665  7.8695891 192.8824 54.43665 194.7454  -1.8630426  -0.046004311
13 45.78278  4.9921489 182.2957 45.78278 213.7223 -31.4266180  -0.751115595
14 49.59998  4.7716099 146.3090 49.59998 201.6296 -55.3205552  -1.321042392
15 45.07720  4.2355525 192.9041 45.07720 213.9655 -21.0613819  -0.504406009
16 62.27717  7.1518606 186.6482 62.27717 169.2455  17.4027250   0.430262983
17 48.50446  3.0712422 228.3253 48.50446 200.6938  27.6314695   0.667366651
18 65.49983  5.4609713 184.8983 65.49983 155.2768  29.6214506   0.726319931
19 44.38387  4.9305222 213.9378 44.38387 217.7981  -3.8603382  -0.092354925
20 43.52883  8.3777627 203.5657 43.52883 228.9961 -25.4303732  -0.634725264
<snip>
49 45.28317  5.0219647 208.1318 45.28317 215.3075  -7.1756966  -0.171560291
50 44.84145  3.6252663 251.5620 44.84145 213.1535  38.4084869   0.923804784
       Ynew
1  169.3296
2  200.9038
3  189.4652
4  177.5159
5  210.4360
6  203.8361
7  236.5821
8  171.9624
9  187.0553
10       NA
11 164.8052
12 192.8824
13 182.2957
14 146.3090
15 192.9041
16 186.6482
17 228.3253
18 184.8983
19 213.9378
20 203.5657
<snip>
49 208.1318
50 251.5620

编辑:我刚刚注意到我的代码中的一个问题。隆德检验产生一个临界值,应与统计残差的绝对值(即无符号)进行比较

I agree with Dirk, It's hard. I would recomend first looking at why you might have outliers. An outlier is just a number that someone thinks is suspicious, it's not a concrete 'bad' value, and unless you can find a reason for it to be an outlier, you may have to live with the uncertainty.

One thing you didn't mention was what kind of outlier you're looking at. Are your data clustered around a mean, do they have a particular distribution or is there some relationship between your data.

Here's some examples

First, we'll create some data, and then taint it with an outlier;

> testout<-data.frame(X1=rnorm(50,mean=50,sd=10),X2=rnorm(50,mean=5,sd=1.5),Y=rnorm(50,mean=200,sd=25))
> #Taint the Data
> testout$X1[10]<-5
> testout$X2[10]<-5
> testout$Y[10]<-530

> testout
         X1         X2        Y
1  44.20043  1.5259458 169.3296
2  40.46721  5.8437076 200.9038
3  48.20571  3.8243373 189.4652
4  60.09808  4.6609190 177.5159
5  50.23627  2.6193455 210.4360
6  43.50972  5.8212863 203.8361
7  44.95626  7.8368405 236.5821
8  66.14391  3.6828843 171.9624
9  45.53040  4.8311616 187.0553
10  5.00000  5.0000000 530.0000
11 64.71719  6.4007245 164.8052
12 54.43665  7.8695891 192.8824
13 45.78278  4.9921489 182.2957
14 49.59998  4.7716099 146.3090
<snip>
48 26.55487  5.8082497 189.7901
49 45.28317  5.0219647 208.1318
50 44.84145  3.6252663 251.5620

It's often most usefull to examine the data graphically (you're brain is much better at spotting outliers than maths is)

> #Use Boxplot to Review the Data
> boxplot(testout$X1, ylab="X1")
> boxplot(testout$X2, ylab="X2")
> boxplot(testout$Y, ylab="Y")

Then you can use a test. If the test returns a cut off value, or the value that might be an outlier, you can use ifelse to remove it

> #Use Outlier test to remove individual values
> testout$newX1<-ifelse(testout$X1==outlier(testout$X1),NA,testout$X1)
> testout
         X1         X2        Y    newX1
1  44.20043  1.5259458 169.3296 44.20043
2  40.46721  5.8437076 200.9038 40.46721
3  48.20571  3.8243373 189.4652 48.20571
4  60.09808  4.6609190 177.5159 60.09808
5  50.23627  2.6193455 210.4360 50.23627
6  43.50972  5.8212863 203.8361 43.50972
7  44.95626  7.8368405 236.5821 44.95626 
8  66.14391  3.6828843 171.9624 66.14391 
9  45.53040  4.8311616 187.0553 45.53040
10  5.00000  5.0000000 530.0000       NA 
11 64.71719  6.4007245 164.8052 64.71719 
12 54.43665  7.8695891 192.8824 54.43665 
13 45.78278  4.9921489 182.2957 45.78278 
14 49.59998  4.7716099 146.3090 49.59998 
15 45.07720  4.2355525 192.9041 45.07720 
16 62.27717  7.1518606 186.6482 62.27717 
17 48.50446  3.0712422 228.3253 48.50446 
18 65.49983  5.4609713 184.8983 65.49983 
19 44.38387  4.9305222 213.9378 44.38387 
20 43.52883  8.3777627 203.5657 43.52883 
<snip>
49 45.28317  5.0219647 208.1318 45.28317 
50 44.84145  3.6252663 251.5620 44.84145

Or for more complicated examples, you can use stats to calculate critical cut off values, here using the Lund Test (See Lund, R. E. 1975, "Tables for An Approximate Test for Outliers in Linear Models", Technometrics, vol. 17, no. 4, pp. 473-476. and Prescott, P. 1975, "An Approximate Test for Outliers in Linear Models", Technometrics, vol. 17, no. 1, pp. 129-132.)

> #Alternative approach using Lund Test
> lundcrit<-function(a, n, q) {
+ # Calculates a Critical value for Outlier Test according to Lund
+ # See Lund, R. E. 1975, "Tables for An Approximate Test for Outliers in Linear Models", Technometrics, vol. 17, no. 4, pp. 473-476.
+ # and Prescott, P. 1975, "An Approximate Test for Outliers in Linear Models", Technometrics, vol. 17, no. 1, pp. 129-132.
+ # a = alpha
+ # n = Number of data elements
+ # q = Number of independent Variables (including intercept)
+ F<-qf(c(1-(a/n)),df1=1,df2=n-q-1,lower.tail=TRUE)
+ crit<-((n-q)*F/(n-q-1+F))^0.5
+ crit
+ }

> testoutlm<-lm(Y~X1+X2,data=testout)

> testout$fitted<-fitted(testoutlm)

> testout$residual<-residuals(testoutlm)

> testout$standardresid<-rstandard(testoutlm)

> n<-nrow(testout)

> q<-length(testoutlm$coefficients)

> crit<-lundcrit(0.1,n,q)

> testout$Ynew<-ifelse(abs(testout$standardresid)>crit,NA,testout$Y)

> testout
         X1         X2        Y    newX1   fitted    residual standardresid
1  44.20043  1.5259458 169.3296 44.20043 209.8467 -40.5171222  -1.009507695
2  40.46721  5.8437076 200.9038 40.46721 231.9221 -31.0183107  -0.747624895
3  48.20571  3.8243373 189.4652 48.20571 203.4786 -14.0134646  -0.335955648
4  60.09808  4.6609190 177.5159 60.09808 169.6108   7.9050960   0.190908291
5  50.23627  2.6193455 210.4360 50.23627 194.3285  16.1075799   0.391537883
6  43.50972  5.8212863 203.8361 43.50972 222.6667 -18.8306252  -0.452070155
7  44.95626  7.8368405 236.5821 44.95626 223.3287  13.2534226   0.326339981
8  66.14391  3.6828843 171.9624 66.14391 148.8870  23.0754677   0.568829360
9  45.53040  4.8311616 187.0553 45.53040 214.0832 -27.0279262  -0.646090667
10  5.00000  5.0000000 530.0000       NA 337.0535 192.9465135   5.714275585
11 64.71719  6.4007245 164.8052 64.71719 159.9911   4.8141018   0.118618011
12 54.43665  7.8695891 192.8824 54.43665 194.7454  -1.8630426  -0.046004311
13 45.78278  4.9921489 182.2957 45.78278 213.7223 -31.4266180  -0.751115595
14 49.59998  4.7716099 146.3090 49.59998 201.6296 -55.3205552  -1.321042392
15 45.07720  4.2355525 192.9041 45.07720 213.9655 -21.0613819  -0.504406009
16 62.27717  7.1518606 186.6482 62.27717 169.2455  17.4027250   0.430262983
17 48.50446  3.0712422 228.3253 48.50446 200.6938  27.6314695   0.667366651
18 65.49983  5.4609713 184.8983 65.49983 155.2768  29.6214506   0.726319931
19 44.38387  4.9305222 213.9378 44.38387 217.7981  -3.8603382  -0.092354925
20 43.52883  8.3777627 203.5657 43.52883 228.9961 -25.4303732  -0.634725264
<snip>
49 45.28317  5.0219647 208.1318 45.28317 215.3075  -7.1756966  -0.171560291
50 44.84145  3.6252663 251.5620 44.84145 213.1535  38.4084869   0.923804784
       Ynew
1  169.3296
2  200.9038
3  189.4652
4  177.5159
5  210.4360
6  203.8361
7  236.5821
8  171.9624
9  187.0553
10       NA
11 164.8052
12 192.8824
13 182.2957
14 146.3090
15 192.9041
16 186.6482
17 228.3253
18 184.8983
19 213.9378
20 203.5657
<snip>
49 208.1318
50 251.5620

Edit: I've just noticed an issue in my code. The Lund test produces a critical value that should be compared to the absolute value of the studantized residual (i.e. without sign)

往昔成烟 2024-08-12 07:28:46

“这很难”。其中大部分内容取决于上下文,您可能必须将其嵌入到您的应用程序中:

  • 数据是否漂移、趋势或周期?
  • 变异性是固定的还是本身可变的?
  • 还有其他系列可以用于“基准测试”吗?

除了异常值包之外,还有 qcc 包作为质量控制文献涵盖了这个领域。

您还可以查看许多其他区域,例如稳健的统计任务视图

"It's hard". Much of this is context-dependent and you may have to embed this into your application:

  • Does the data drift, trend, or cycle ?
  • Is the variability fixed or is it itself variable ?
  • Are there other series you can use for 'benchmarking' ?

Other than the outliers packages there is also the qcc package as the quality control literature covers this area.

There are many other areas you could look at as e.g. the robust statistics Task View.

天涯离梦残月幽梦 2024-08-12 07:28:46

尝试使用 outliers::score 函数。我不建议删除所谓的异常值,但了解你的极端观察结果是有好处的。

library(outliers)
set.seed(1234)
x = rnorm(10)
[1] -1.2070657  0.2774292  1.0844412 -2.3456977  0.4291247  0.5060559 -0.5747400 -0.5466319
[9] -0.5644520 -0.8900378
outs <- scores(x, type="chisq", prob=0.9)  # beyond 90th %ile based on chi-sq
#> [1] FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
x[outs]  # most extreme
#> [1] -2.345698

您将在此处找到有关异常值检测的更多帮助

Try the outliers::score function. I don't advise removing the so called outlier's, but knowing your extreme observations is good.

library(outliers)
set.seed(1234)
x = rnorm(10)
[1] -1.2070657  0.2774292  1.0844412 -2.3456977  0.4291247  0.5060559 -0.5747400 -0.5466319
[9] -0.5644520 -0.8900378
outs <- scores(x, type="chisq", prob=0.9)  # beyond 90th %ile based on chi-sq
#> [1] FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
x[outs]  # most extreme
#> [1] -2.345698

You'll find more help with outlier detection here

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文