如何求两个地点的经纬度距离?

发布于 2024-08-04 20:31:56 字数 97 浏览 10 评论 0原文

我有一组位置的纬度和经度。

  • 如何找到从集合中的一个位置到另一个位置的距离
  • 有公式吗?

I have a set of latitudes and longitudes of locations.

  • How to find distance from one location in the set to another?
  • Is there a formula ?

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(12

栀梦 2024-08-11 20:31:56

半正矢公式假定地球是球形的。然而,地球的形状更为复杂。扁球体模型会给出更好的结果。

如果需要这样的精度,最好使用文森特反演公式
有关详细信息,请参阅 http://en.wikipedia.org/wiki/Vincenty's_formulae。使用它,您可以获得 0.5mm 的球体模型精度。

不存在完美的公式,因为地球的真实形状太复杂,无法用公式来表达。此外,地球的形状会因气候事件而发生变化(请参阅http://www.nasa.gov/centers/goddard/earthandsun/earthshape.html" rel="noreferrer">http://www. nasa.gov/centers/goddard/earthandsun/earthshape.html),并且由于地球自转也会随着时间而变化。

您还应该注意,上述方法没有考虑海拔高度,并假设海平面扁球体。

编辑 2010 年 7 月 10 日: 我发现在极少数情况下 Vincenty 反演公式不会收敛到声明的精度。更好的主意是使用 GeographicLib (请参阅 http://sourceforge.net/projects/geographiclib/)这也更准确。

The Haversine formula assumes a spherical earth. However, the shape of the earh is more complex. An oblate spheroid model will give better results.

If such accuracy is needed, you should better use Vincenty inverse formula.
See http://en.wikipedia.org/wiki/Vincenty's_formulae for details. Using it, you can get a 0.5mm accuracy for the spheroid model.

There is no perfect formula, since the real shape of the earth is too complex to be expressed by a formula. Moreover, the shape of earth changes due to climate events (see http://www.nasa.gov/centers/goddard/earthandsun/earthshape.html), and also changes over time due to the rotation of the earth.

You should also note that the method above does not take altitudes into account, and assumes a sea-level oblate spheroid.

Edit 10-Jul-2010: I found out that there are rare situations for which Vincenty inverse formula does not converge to the declared accuracy. A better idea is to use GeographicLib (see http://sourceforge.net/projects/geographiclib/) which is also more accurate.

太阳哥哥 2024-08-11 20:31:56

这是一个: http://www.movable-type.co.uk/scripts/ latlong.html

使用半正矢公式:

R = earth’s radius (mean radius = 6,371km)
Δlat = lat2− lat1
Δlong = long2− long1
a = sin²(Δlat/2) + cos(lat1).cos(lat2).sin²(Δlong/2)
c = 2.atan2(√a, √(1−a))
d = R.c 

Here's one: http://www.movable-type.co.uk/scripts/latlong.html

Using Haversine formula:

R = earth’s radius (mean radius = 6,371km)
Δlat = lat2− lat1
Δlong = long2− long1
a = sin²(Δlat/2) + cos(lat1).cos(lat2).sin²(Δlong/2)
c = 2.atan2(√a, √(1−a))
d = R.c 
苄①跕圉湢 2024-08-11 20:31:56

应用半正矢公式求出距离。请参阅下面的 C# 代码来查找 2 个坐标之间的距离。更好的是,如果您想要查找特定半径内的商店列表,您可以在 SQL 中应用 WHERE 子句或在 C# 中应用 LINQ 过滤器。

这里的公式以公里为单位,您必须更改相关数字,它将适用于英里。

例如:将 6371.392896 转换为英里。

    DECLARE @radiusInKm AS FLOAT
    DECLARE @lat2Compare AS FLOAT
    DECLARE @long2Compare AS FLOAT
    SET @radiusInKm = 5.000
    SET @lat2Compare = insert_your_lat_to_compare_here
    SET @long2Compare = insert_you_long_to_compare_here

    SELECT * FROM insert_your_table_here WITH(NOLOCK)
    WHERE (6371.392896*2*ATN2(SQRT((sin((radians(GeoLatitude - @lat2Compare)) / 2) * sin((radians(GeoLatitude - @lat2Compare)) / 2)) + (cos(radians(GeoLatitude)) * cos(radians(@lat2Compare)) * sin(radians(GeoLongitude - @long2Compare)/2) * sin(radians(GeoLongitude - @long2Compare)/2)))
    , SQRT(1-((sin((radians(GeoLatitude - @lat2Compare)) / 2) * sin((radians(GeoLatitude - @lat2Compare)) / 2)) + (cos(radians(GeoLatitude)) * cos(radians(@lat2Compare)) * sin(radians(GeoLongitude - @long2Compare)/2) * sin(radians(GeoLongitude - @long2Compare)/2)))
    ))) <= @radiusInKm

如果您想在 C# 中执行半正弦公式,

    double resultDistance = 0.0;
    double avgRadiusOfEarth = 6371.392896; //Radius of the earth differ, I'm taking the average.

    //Haversine formula
    //distance = R * 2 * aTan2 ( square root of A, square root of 1 - A )
    //                   where A = sinus squared (difference in latitude / 2) + (cosine of latitude 1 * cosine of latitude 2 * sinus squared (difference in longitude / 2))
    //                   and R = the circumference of the earth

    double differenceInLat = DegreeToRadian(currentLatitude - latitudeToCompare);
    double differenceInLong = DegreeToRadian(currentLongitude - longtitudeToCompare);
    double aInnerFormula = Math.Cos(DegreeToRadian(currentLatitude)) * Math.Cos(DegreeToRadian(latitudeToCompare)) * Math.Sin(differenceInLong / 2) * Math.Sin(differenceInLong / 2);
    double aFormula = (Math.Sin((differenceInLat) / 2) * Math.Sin((differenceInLat) / 2)) + (aInnerFormula);
    resultDistance = avgRadiusOfEarth * 2 * Math.Atan2(Math.Sqrt(aFormula), Math.Sqrt(1 - aFormula));

DegreesToRadian 是我自定义创建的一个函数,它是一个简单的 1 行“Math.PI * 角度” / 180.0

我的博客条目-SQL Haversine

Apply the Haversine formula to find the distance. See the C# code below to find the distance between 2 coordinates. Better still if you want to say find a list of stores within a certain radius, you could apply a WHERE clause in SQL or a LINQ filter in C# to it.

The formula here is in kilometres, you will have to change the relevant numbers and it will work for miles.

E.g: Convert 6371.392896 to miles.

    DECLARE @radiusInKm AS FLOAT
    DECLARE @lat2Compare AS FLOAT
    DECLARE @long2Compare AS FLOAT
    SET @radiusInKm = 5.000
    SET @lat2Compare = insert_your_lat_to_compare_here
    SET @long2Compare = insert_you_long_to_compare_here

    SELECT * FROM insert_your_table_here WITH(NOLOCK)
    WHERE (6371.392896*2*ATN2(SQRT((sin((radians(GeoLatitude - @lat2Compare)) / 2) * sin((radians(GeoLatitude - @lat2Compare)) / 2)) + (cos(radians(GeoLatitude)) * cos(radians(@lat2Compare)) * sin(radians(GeoLongitude - @long2Compare)/2) * sin(radians(GeoLongitude - @long2Compare)/2)))
    , SQRT(1-((sin((radians(GeoLatitude - @lat2Compare)) / 2) * sin((radians(GeoLatitude - @lat2Compare)) / 2)) + (cos(radians(GeoLatitude)) * cos(radians(@lat2Compare)) * sin(radians(GeoLongitude - @long2Compare)/2) * sin(radians(GeoLongitude - @long2Compare)/2)))
    ))) <= @radiusInKm

If you would like to perform the Haversine formula in C#,

    double resultDistance = 0.0;
    double avgRadiusOfEarth = 6371.392896; //Radius of the earth differ, I'm taking the average.

    //Haversine formula
    //distance = R * 2 * aTan2 ( square root of A, square root of 1 - A )
    //                   where A = sinus squared (difference in latitude / 2) + (cosine of latitude 1 * cosine of latitude 2 * sinus squared (difference in longitude / 2))
    //                   and R = the circumference of the earth

    double differenceInLat = DegreeToRadian(currentLatitude - latitudeToCompare);
    double differenceInLong = DegreeToRadian(currentLongitude - longtitudeToCompare);
    double aInnerFormula = Math.Cos(DegreeToRadian(currentLatitude)) * Math.Cos(DegreeToRadian(latitudeToCompare)) * Math.Sin(differenceInLong / 2) * Math.Sin(differenceInLong / 2);
    double aFormula = (Math.Sin((differenceInLat) / 2) * Math.Sin((differenceInLat) / 2)) + (aInnerFormula);
    resultDistance = avgRadiusOfEarth * 2 * Math.Atan2(Math.Sqrt(aFormula), Math.Sqrt(1 - aFormula));

DegreesToRadian is a function I custom created, its is a simple 1 liner of"Math.PI * angle / 180.0

My blog entry - SQL Haversine

踏雪无痕 2024-08-11 20:31:56

您是否在寻找

Haversine 公式

半正矢公式是一个方程
在导航中很重要,给予
两点之间的大圆距离
从他们的球体上的点
经度和纬度。它是一个
更一般公式的特例
在球面三角学中,定律
半正矢,关联边和
球面“三角形”的角度。

Are you looking for

Haversine formula

The haversine formula is an equation
important in navigation, giving
great-circle distances between two
points on a sphere from their
longitudes and latitudes. It is a
special case of a more general formula
in spherical trigonometry, the law of
haversines, relating the sides and
angles of spherical "triangles".

琉璃繁缕 2024-08-11 20:31:56

看看这个..还有一个 javascript 示例。

查找距离

Have a look at this.. has a javascript example as well.

Find Distance

够钟 2024-08-11 20:31:56

这是一个通过给定 IP 查找长/纬度位置/附近位置的小提琴:

http://jsfiddle。 net/bassta/zrgd9qc3/2/

这是我用来计算直线距离的函数:

function distance(lat1, lng1, lat2, lng2) {
        var radlat1 = Math.PI * lat1 / 180;
        var radlat2 = Math.PI * lat2 / 180;
        var radlon1 = Math.PI * lng1 / 180;
        var radlon2 = Math.PI * lng2 / 180;
        var theta = lng1 - lng2;
        var radtheta = Math.PI * theta / 180;
        var dist = Math.sin(radlat1) * Math.sin(radlat2) + Math.cos(radlat1) * Math.cos(radlat2) * Math.cos(radtheta);
        dist = Math.acos(dist);
        dist = dist * 180 / Math.PI;
        dist = dist * 60 * 1.1515;

        //Get in in kilometers
        dist = dist * 1.609344;

        return dist;
    }

它返回以公里为单位的距离

here is a fiddle with finding locations / near locations to long/lat by given IP:

http://jsfiddle.net/bassta/zrgd9qc3/2/

And here is the function I use to calculate the distance in straight line:

function distance(lat1, lng1, lat2, lng2) {
        var radlat1 = Math.PI * lat1 / 180;
        var radlat2 = Math.PI * lat2 / 180;
        var radlon1 = Math.PI * lng1 / 180;
        var radlon2 = Math.PI * lng2 / 180;
        var theta = lng1 - lng2;
        var radtheta = Math.PI * theta / 180;
        var dist = Math.sin(radlat1) * Math.sin(radlat2) + Math.cos(radlat1) * Math.cos(radlat2) * Math.cos(radtheta);
        dist = Math.acos(dist);
        dist = dist * 180 / Math.PI;
        dist = dist * 60 * 1.1515;

        //Get in in kilometers
        dist = dist * 1.609344;

        return dist;
    }

It returns the distance in Kilometers

三生池水覆流年 2024-08-11 20:31:56

如果您测量的距离小于(可能)1 度纬度/经度变化,正在寻找性能非常高的近似值,并且愿意接受比半正弦公式更多的不准确 ,考虑这两个替代方案:

(1)来自 计算距离

a = pi/2 - lat1  
b = pi/2 - lat2  
c = sqrt( a^2 + b^2 - 2 * a * b * cos(lon2 - lon1) )   
d = R * c

(2)毕达哥拉斯定理根据纬度进行调整,如Ewan Todd 的著作中所示所以帖子

d_ew = (long1 - long0) * cos(average(lat0, lat1))  
d_ns = (lat1 - lat0)  
d = sqrt(d_ew * d_ew + d_ns * d_ns)  

注释:
与 Ewan 的帖子相比,我在 cos( lat0 ) 中用 average(lat0, lat1) 替换了 lat0

#2 对于值是度、弧度还是公里含糊不清;您还需要一些转换代码。请参阅本文底部的我的完整代码。

#1 的设计即使在极点附近也能正常工作,但如果您测量的距离的端点位于极点的“相反”两侧(经度相差超过 90 度?),建议使用半正弦值,即使距离很短。

我还没有彻底测量这些方法的错误,因此您应该为您的应用程序选取代表点,并将结果与​​一些高质量的库进行比较,以确定准确性是否可以接受。对于小于几公里的距离,我的直觉是这些距离与正确测量值的误差在 1% 以内。


获得高性能的另一种方法(如果适用):

如果您有一大组静态点,位于经度/纬度的一到两度内,那么您将要计算少量动态(移动)点的距离,请考虑将静态点一次性转换为包含的UTM区域(或任何其他本地笛卡尔坐标系),然后在笛卡尔坐标系中进行所有数学运算。
笛卡尔 = 平坦的地球 = 毕达哥拉斯定理适用,因此距离 = sqrt(dx^2 + dy^2)。

那么,将少数移动点准确转换为UTM的成本就很容易承担。


#1(极地)注意事项:对于小于 0.1(?)米的距离可能会非常错误。即使使用双精度数学,以下坐标(其真实距离约为 0.005 米)在我的 Polar 算法实现中被指定为“零”:

输入:

    lon1Xdeg    16.6564465477996    double
    lat1Ydeg    57.7760262271983    double
    lon2Xdeg    16.6564466358281    double
    lat2Ydeg    57.776026248554 double

结果:

Oblate spheroid formula:  
    0.00575254911118364 double
Haversine:
    0.00573422966122257 double
Polar:
    0

这是由于两个因素 uv 完全相互抵消:

    u   0.632619944868587   double
    v   -0.632619944868587  double

在另一种情况下,当扁球体答案为 0.002887 m 时,它给出的距离为 0.067129 m。问题是 cos(lon2 - lon1)1 太接近,因此 cos 函数返回的正是 1

除了测量亚米级距离之外,我还发现了迄今为止输入的有限小距离数据的最大误差(与扁球体公式相比):

    maxHaversineErrorRatio  0.00350976281908381 double
    maxPolarErrorRatio  0.0510789996931342  double

其中“1”代表答案中 100% 的误差;例如,当它返回“0”时,即为“1”错误(从上面的“maxPolar”中排除)。因此“0.01”将是“100 分之一”或 1% 的误差。

将距离小于 2000 米的极坐标误差与半正弦误差进行比较,看看这个更简单的公式有多糟糕。到目前为止,我见过的最差情况是 Polar 为每 1000 份 51 份,而 Haversine 为每 1000 份 4 份。位于北纬58度左右。


现在实施“毕达哥拉斯与纬度调整”。

对于距离小于 1 的距离,它比 Polar 更加一致。 2000米
我原本以为极地问题只有在<<时才会出现。 1米,
但下面显示的结果相当令人不安。

当距离接近零时,毕达哥拉斯/纬度接近半正弦值。
例如,此测量 ~ 217 米:

    lon1Xdeg    16.6531667510102    double
    lat1Ydeg    57.7751705615804    double
    lon2Xdeg    16.6564468739869    double
    lat2Ydeg    57.7760263007586    double

    oblate      217.201200413731
    haversine   216.518428601051
    polar       226.128616011973
    pythag-cos  216.518428631907
    havErrRatio 0.00314349925958048
    polErrRatio 0.041102054598393
    pycErrRatio 0.00314349911751603

Polar 对这些输入的误差要大得多;要么是我的代码中存在一些错误,要么是我正在运行的 Cos 函数中存在错误,或者我必须建议不要使用 Polar,即使大多数 Polar 测量结果比这更接近。

OTOH,毕达哥拉斯,甚至使用 * cos(latitude) 调整时,误差的增加速度快于距离(距离越大,max_error/distance 的比率就会增加),因此您需要仔细考虑要测量的最大距离,以及可接受的错误。此外,不建议使用毕达哥拉斯比较两个几乎相等的距离来决定哪个更短,因为不同方向的误差不同(未显示证据)。

最坏情况测量,errorRatio = Abs(error) / distance(瑞典;最高 2000 m):

    t_maxHaversineErrorRatio    0.00351012021578681 double
    t_maxPolarErrorRatio        66.0825360597085    double
    t_maxPythagoreanErrorRatio  0.00350976281416454 double

如前所述,极端极坐标误差适用于亚米距离,其中可能报告零而不是 6 cm,或者报告超过 0.5 m距离为 1 厘米(因此 t_maxPolarErrorRatio 中显示的是“66 x”最坏情况),但在较大距离下也有一些较差的结果。 [需要使用已知高度准确的余弦函数再次进行测试。]

在 Moto E4 上运行的 Xamarin.Android 中使用 C# 代码进行测量。


C#代码:

    // x=longitude, y= latitude. oblate spheroid formula. TODO: From where?
    public static double calculateDistanceDD_AED( double lon1Xdeg, double lat1Ydeg, double lon2Xdeg, double lat2Ydeg )
    {
        double c_dblEarthRadius = 6378.135; // km
        double c_dblFlattening = 1.0 / 298.257223563; // WGS84 inverse
                                                      // flattening
        // Q: Why "-" for longitudes??
        double p1x = -degreesToRadians( lon1Xdeg );
        double p1y = degreesToRadians( lat1Ydeg );
        double p2x = -degreesToRadians( lon2Xdeg );
        double p2y = degreesToRadians( lat2Ydeg );

        double F = (p1y + p2y) / 2;
        double G = (p1y - p2y) / 2;
        double L = (p1x - p2x) / 2;

        double sing = Math.Sin( G );
        double cosl = Math.Cos( L );
        double cosf = Math.Cos( F );
        double sinl = Math.Sin( L );
        double sinf = Math.Sin( F );
        double cosg = Math.Cos( G );

        double S = sing * sing * cosl * cosl + cosf * cosf * sinl * sinl;
        double C = cosg * cosg * cosl * cosl + sinf * sinf * sinl * sinl;
        double W = Math.Atan2( Math.Sqrt( S ), Math.Sqrt( C ) );
        if (W == 0.0)
            return 0.0;

        double R = Math.Sqrt( (S * C) ) / W;
        double H1 = (3 * R - 1.0) / (2.0 * C);
        double H2 = (3 * R + 1.0) / (2.0 * S);
        double D = 2 * W * c_dblEarthRadius;

        // Apply flattening factor
        D = D * (1.0 + c_dblFlattening * H1 * sinf * sinf * cosg * cosg - c_dblFlattening * H2 * cosf * cosf * sing * sing);

        // Transform to meters
        D = D * 1000.0;

        // tmstest
        if (true)
        {
            // Compare Haversine.
            double haversine = HaversineApproxDistanceGeo( lon1Xdeg, lat1Ydeg, lon2Xdeg, lat2Ydeg );
            double error = haversine - D;
            double absError = Math.Abs( error );
            double errorRatio = absError / D;
            if (errorRatio > t_maxHaversineErrorRatio)
            {
                if (errorRatio > t_maxHaversineErrorRatio * 1.1)
                    Helper.test();
                t_maxHaversineErrorRatio = errorRatio;
            }

            // Compare Polar Coordinate Flat Earth. 
            double polarDistanceGeo = ApproxDistanceGeo_Polar( lon1Xdeg, lat1Ydeg, lon2Xdeg, lat2Ydeg, D );
            double error2 = polarDistanceGeo - D;
            double absError2 = Math.Abs( error2 );
            double errorRatio2 = absError2 / D;
            if (errorRatio2 > t_maxPolarErrorRatio)
            {
                if (polarDistanceGeo > 0)
                {
                    if (errorRatio2 > t_maxPolarErrorRatio * 1.1)
                        Helper.test();
                    t_maxPolarErrorRatio = errorRatio2;
                }
                else
                    Helper.dubious();
            }

            // Compare Pythagorean Theorem with Latitude Adjustment. 
            double pythagoreanDistanceGeo = ApproxDistanceGeo_PythagoreanCosLatitude( lon1Xdeg, lat1Ydeg, lon2Xdeg, lat2Ydeg, D );
            double error3 = pythagoreanDistanceGeo - D;
            double absError3 = Math.Abs( error3 );
            double errorRatio3 = absError3 / D;
            if (errorRatio3 > t_maxPythagoreanErrorRatio)
            {
                if (D < 2000)
                {
                    if (errorRatio3 > t_maxPythagoreanErrorRatio * 1.05)
                        Helper.test();
                    t_maxPythagoreanErrorRatio = errorRatio3;
                }
            }
        }


        return D;
    }

    // As a fraction of the distance.
    private static double t_maxHaversineErrorRatio, t_maxPolarErrorRatio, t_maxPythagoreanErrorRatio;


    // Average of equatorial and polar radii (meters).
    public const double EarthAvgRadius = 6371000;
    public const double EarthAvgCircumference = EarthAvgRadius * 2 * PI;
    // CAUTION: This is an average of great circles; won't be the actual distance of any longitude or latitude degree.
    public const double EarthAvgMeterPerGreatCircleDegree = EarthAvgCircumference / 360;

    // Haversine formula (assumes Earth is sphere).
    // "deg" = degrees.
    // Perhaps based on Haversine Formula in https://cs.nyu.edu/visual/home/proj/tiger/gisfaq.html
    public static double HaversineApproxDistanceGeo(double lon1Xdeg, double lat1Ydeg, double lon2Xdeg, double lat2Ydeg)
    {
        double lon1 = degreesToRadians( lon1Xdeg );
        double lat1 = degreesToRadians( lat1Ydeg );
        double lon2 = degreesToRadians( lon2Xdeg );
        double lat2 = degreesToRadians( lat2Ydeg );

        double dlon = lon2 - lon1;
        double dlat = lat2 - lat1;
        double sinDLat2 = Sin( dlat / 2 );
        double sinDLon2 = Sin( dlon / 2 );
        double a = sinDLat2 * sinDLat2 + Cos( lat1 ) * Cos( lat2 ) * sinDLon2 * sinDLon2;
        double c = 2 * Atan2( Sqrt( a ), Sqrt( 1 - a ) );
        double d = EarthAvgRadius * c;
        return d;
    }

    // From https://stackoverflow.com/a/19772119/199364
    // Based on Polar Coordinate Flat Earth in https://cs.nyu.edu/visual/home/proj/tiger/gisfaq.html
    public static double ApproxDistanceGeo_Polar( double lon1deg, double lat1deg, double lon2deg, double lat2deg, double D = 0 )
    {
        double approxUnitDistSq = ApproxUnitDistSq_Polar(lon1deg, lat1deg, lon2deg, lat2deg, D);
        double c = Sqrt( approxUnitDistSq );
        return EarthAvgRadius * c;
    }

    // Might be useful to avoid taking Sqrt, when comparing to some threshold.
    // Threshold would have to be adjusted to match:  Power(threshold / EarthAvgRadius, 2)
    private static double ApproxUnitDistSq_Polar(double lon1deg, double lat1deg, double lon2deg, double lat2deg, double D = 0 )
    {
        const double HalfPi = PI / 2; //1.5707963267949;

        double lon1 = degreesToRadians(lon1deg);
        double lat1 = degreesToRadians(lat1deg);
        double lon2 = degreesToRadians(lon2deg);
        double lat2 = degreesToRadians(lat2deg);

        double a = HalfPi - lat1;
        double b = HalfPi - lat2;
        double u = a * a + b * b;
        double dlon21 = lon2 - lon1;
        double cosDeltaLon = Cos( dlon21 );
        double v = -2 * a * b * cosDeltaLon;
        // TBD: Is "Abs" necessary?  That is, is "u + v" ever negative?
        //   (I think not; "v" looks like a secondary term. Though might be round-off issue near zero when a~=b.)
        double approxUnitDistSq = Abs(u + v);

        //if (approxUnitDistSq.nearlyEquals(0, 1E-16))
        //  Helper.dubious();
        //else if (D > 0)
        //{
        //  double dba = b - a;
        //  double unitD = D / EarthAvgRadius;
        //  double unitDSq = unitD * unitD;
        //  if (approxUnitDistSq > 2 * unitDSq)
        //      Helper.dubious();
        //  else if (approxUnitDistSq * 2 < unitDSq)
        //      Helper.dubious();
        //}

        return approxUnitDistSq;
    }

    // Pythagorean Theorem with Latitude Adjustment - from Ewan Todd - https://stackoverflow.com/a/1664836/199364
    // Refined by ToolmakerSteve - https://stackoverflow.com/a/53468745/199364
    public static double ApproxDistanceGeo_PythagoreanCosLatitude( double lon1deg, double lat1deg, double lon2deg, double lat2deg, double D = 0 )
    {
        double approxDegreesSq = ApproxDegreesSq_PythagoreanCosLatitude( lon1deg, lat1deg, lon2deg, lat2deg );
        // approximate degrees on the great circle between the points.
        double d_degrees = Sqrt( approxDegreesSq );
        return d_degrees * EarthAvgMeterPerGreatCircleDegree;
    }

    public static double ApproxDegreesSq_PythagoreanCosLatitude( double lon1deg, double lat1deg, double lon2deg, double lat2deg )
    {
        double avgLatDeg = average( lat1deg , lat2deg );
        double avgLat = degreesToRadians( avgLatDeg );

        double d_ew = (lon2deg - lon1deg) * Cos( avgLat );
        double d_ns = (lat2deg - lat1deg);
        double approxDegreesSq = d_ew * d_ew + d_ns * d_ns;
        return approxDegreesSq;
    }

If you are measuring distances less than (perhaps) 1 degree lat/long change, are looking for a very high performance approximation, and are willing to accept more inaccuracy than Haversine formula, consider these two alternatives:

(1) "Polar Coordinate Flat-Earth Formula" from Computing Distances:

a = pi/2 - lat1  
b = pi/2 - lat2  
c = sqrt( a^2 + b^2 - 2 * a * b * cos(lon2 - lon1) )   
d = R * c

(2) Pythagorean theorem adjusted for latitude, as seen in Ewan Todd's SO post:

d_ew = (long1 - long0) * cos(average(lat0, lat1))  
d_ns = (lat1 - lat0)  
d = sqrt(d_ew * d_ew + d_ns * d_ns)  

NOTES:
Compared to Ewan's post, I've substituted average(lat0, lat1) for lat0 inside of cos( lat0 ).

#2 is vague on whether values are degrees, radians, or kilometers; you will need some conversion code as well. See my complete code at bottom of this post.

#1 is designed to work well even near the poles, though if you are measuring a distance whose endpoints are on "opposite" sides of the pole (longitudes differ by more than 90 degrees?), Haversine is recommended instead, even for small distances.

I haven't thoroughly measured errors of these approaches, so you should take representative points for your application, and compare results to some high-quality library, to decide if the accuracies are acceptable. For distances less than a few kilometers my gut sense is that these are within 1% of correct measurement.


An alternative way to gain high performance (when applicable):

If you have a large set of static points, within one or two degrees of longitude/latitude, that you will then be calculating distances from a small number of dynamic (moving) points, consider converting your static points ONCE to the containing UTM zone (or to any other local Cartesian coordinate system), and then doing all your math in that Cartesian coordinate system.
Cartesian = flat earth = Pythagorean theorem applies, so distance = sqrt(dx^2 + dy^2).

Then the cost of accurately converting the few moving points to UTM is easily afforded.


CAVEAT for #1 (Polar): May be very wrong for distances less than 0.1 (?) meter. Even with double precision math, the following coordinates, whose true distance is about 0.005 meters, was given as "zero" by my implementation of Polar algorithm:

inputs:

    lon1Xdeg    16.6564465477996    double
    lat1Ydeg    57.7760262271983    double
    lon2Xdeg    16.6564466358281    double
    lat2Ydeg    57.776026248554 double

results:

Oblate spheroid formula:  
    0.00575254911118364 double
Haversine:
    0.00573422966122257 double
Polar:
    0

this was due to the two factors u and v exactly canceling each other:

    u   0.632619944868587   double
    v   -0.632619944868587  double

In another case, it gave a distance of 0.067129 m when the oblate spheroid answer was 0.002887 m. The problem was that cos(lon2 - lon1) was too close to 1, so cos function returned exactly 1.

Other than measuring sub-meter distances, the max errors (compared to an oblate spheroid formula) I found for the limited small-distance data I've fed in so far:

    maxHaversineErrorRatio  0.00350976281908381 double
    maxPolarErrorRatio  0.0510789996931342  double

where "1" would represent a 100% error in the answer; e.g. when it returned "0", that was an error of "1" (excluded from above "maxPolar"). So "0.01" would be an error of "1 part in 100" or 1%.

Comparing Polar error with Haversine error over distances less than 2000 meters to see how much worse this simpler formula is. So far, the worst I've seen is 51 parts per 1000 for Polar vs 4 parts per 1000 for Haversine. At about 58 degrees latitude.


Now implemented "Pythagorean with Latitude Adjustment".

It is MUCH more consistent than Polar for distances < 2000 m.
I originally thought the Polar problems were only when < 1 m,
but the result shown immediately below is quite troubling.

As distances approach zero, pythagorean/latitude approaches haversine.
For example this measurement ~ 217 meters:

    lon1Xdeg    16.6531667510102    double
    lat1Ydeg    57.7751705615804    double
    lon2Xdeg    16.6564468739869    double
    lat2Ydeg    57.7760263007586    double

    oblate      217.201200413731
    haversine   216.518428601051
    polar       226.128616011973
    pythag-cos  216.518428631907
    havErrRatio 0.00314349925958048
    polErrRatio 0.041102054598393
    pycErrRatio 0.00314349911751603

Polar has a much worse error with these inputs; either there is some mistake in my code, or in Cos function I am running on, or I have to recommend not using Polar, even though most Polar measurements were much closer than this.

OTOH, Pythagorean, even with * cos(latitude) adjustment, has error that increases more rapidly than distance (ratio of max_error/distance increases for larger distances), so you need to carefully consider the maximum distance you will measure, and the acceptable error. In addition, it is not advisable to COMPARE two nearly-equal distances using Pythagorean, to decide which is shorter, as the error is different in different DIRECTIONS (evidence not shown).

Worst case measurements, errorRatio = Abs(error) / distance (Sweden; up to 2000 m):

    t_maxHaversineErrorRatio    0.00351012021578681 double
    t_maxPolarErrorRatio        66.0825360597085    double
    t_maxPythagoreanErrorRatio  0.00350976281416454 double

As mentioned before, the extreme polar errors are for sub-meter distances, where it could report zero instead of 6 cm, or report over 0.5 m for a distance of 1 cm (hence the "66 x" worst case shown in t_maxPolarErrorRatio), but there are also some poor results at larger distances. [Needs to be tested again with a Cosine function that is known to be highly accurate.]

Measurements taken in C# code in Xamarin.Android running on a Moto E4.


C# code:

    // x=longitude, y= latitude. oblate spheroid formula. TODO: From where?
    public static double calculateDistanceDD_AED( double lon1Xdeg, double lat1Ydeg, double lon2Xdeg, double lat2Ydeg )
    {
        double c_dblEarthRadius = 6378.135; // km
        double c_dblFlattening = 1.0 / 298.257223563; // WGS84 inverse
                                                      // flattening
        // Q: Why "-" for longitudes??
        double p1x = -degreesToRadians( lon1Xdeg );
        double p1y = degreesToRadians( lat1Ydeg );
        double p2x = -degreesToRadians( lon2Xdeg );
        double p2y = degreesToRadians( lat2Ydeg );

        double F = (p1y + p2y) / 2;
        double G = (p1y - p2y) / 2;
        double L = (p1x - p2x) / 2;

        double sing = Math.Sin( G );
        double cosl = Math.Cos( L );
        double cosf = Math.Cos( F );
        double sinl = Math.Sin( L );
        double sinf = Math.Sin( F );
        double cosg = Math.Cos( G );

        double S = sing * sing * cosl * cosl + cosf * cosf * sinl * sinl;
        double C = cosg * cosg * cosl * cosl + sinf * sinf * sinl * sinl;
        double W = Math.Atan2( Math.Sqrt( S ), Math.Sqrt( C ) );
        if (W == 0.0)
            return 0.0;

        double R = Math.Sqrt( (S * C) ) / W;
        double H1 = (3 * R - 1.0) / (2.0 * C);
        double H2 = (3 * R + 1.0) / (2.0 * S);
        double D = 2 * W * c_dblEarthRadius;

        // Apply flattening factor
        D = D * (1.0 + c_dblFlattening * H1 * sinf * sinf * cosg * cosg - c_dblFlattening * H2 * cosf * cosf * sing * sing);

        // Transform to meters
        D = D * 1000.0;

        // tmstest
        if (true)
        {
            // Compare Haversine.
            double haversine = HaversineApproxDistanceGeo( lon1Xdeg, lat1Ydeg, lon2Xdeg, lat2Ydeg );
            double error = haversine - D;
            double absError = Math.Abs( error );
            double errorRatio = absError / D;
            if (errorRatio > t_maxHaversineErrorRatio)
            {
                if (errorRatio > t_maxHaversineErrorRatio * 1.1)
                    Helper.test();
                t_maxHaversineErrorRatio = errorRatio;
            }

            // Compare Polar Coordinate Flat Earth. 
            double polarDistanceGeo = ApproxDistanceGeo_Polar( lon1Xdeg, lat1Ydeg, lon2Xdeg, lat2Ydeg, D );
            double error2 = polarDistanceGeo - D;
            double absError2 = Math.Abs( error2 );
            double errorRatio2 = absError2 / D;
            if (errorRatio2 > t_maxPolarErrorRatio)
            {
                if (polarDistanceGeo > 0)
                {
                    if (errorRatio2 > t_maxPolarErrorRatio * 1.1)
                        Helper.test();
                    t_maxPolarErrorRatio = errorRatio2;
                }
                else
                    Helper.dubious();
            }

            // Compare Pythagorean Theorem with Latitude Adjustment. 
            double pythagoreanDistanceGeo = ApproxDistanceGeo_PythagoreanCosLatitude( lon1Xdeg, lat1Ydeg, lon2Xdeg, lat2Ydeg, D );
            double error3 = pythagoreanDistanceGeo - D;
            double absError3 = Math.Abs( error3 );
            double errorRatio3 = absError3 / D;
            if (errorRatio3 > t_maxPythagoreanErrorRatio)
            {
                if (D < 2000)
                {
                    if (errorRatio3 > t_maxPythagoreanErrorRatio * 1.05)
                        Helper.test();
                    t_maxPythagoreanErrorRatio = errorRatio3;
                }
            }
        }


        return D;
    }

    // As a fraction of the distance.
    private static double t_maxHaversineErrorRatio, t_maxPolarErrorRatio, t_maxPythagoreanErrorRatio;


    // Average of equatorial and polar radii (meters).
    public const double EarthAvgRadius = 6371000;
    public const double EarthAvgCircumference = EarthAvgRadius * 2 * PI;
    // CAUTION: This is an average of great circles; won't be the actual distance of any longitude or latitude degree.
    public const double EarthAvgMeterPerGreatCircleDegree = EarthAvgCircumference / 360;

    // Haversine formula (assumes Earth is sphere).
    // "deg" = degrees.
    // Perhaps based on Haversine Formula in https://cs.nyu.edu/visual/home/proj/tiger/gisfaq.html
    public static double HaversineApproxDistanceGeo(double lon1Xdeg, double lat1Ydeg, double lon2Xdeg, double lat2Ydeg)
    {
        double lon1 = degreesToRadians( lon1Xdeg );
        double lat1 = degreesToRadians( lat1Ydeg );
        double lon2 = degreesToRadians( lon2Xdeg );
        double lat2 = degreesToRadians( lat2Ydeg );

        double dlon = lon2 - lon1;
        double dlat = lat2 - lat1;
        double sinDLat2 = Sin( dlat / 2 );
        double sinDLon2 = Sin( dlon / 2 );
        double a = sinDLat2 * sinDLat2 + Cos( lat1 ) * Cos( lat2 ) * sinDLon2 * sinDLon2;
        double c = 2 * Atan2( Sqrt( a ), Sqrt( 1 - a ) );
        double d = EarthAvgRadius * c;
        return d;
    }

    // From https://stackoverflow.com/a/19772119/199364
    // Based on Polar Coordinate Flat Earth in https://cs.nyu.edu/visual/home/proj/tiger/gisfaq.html
    public static double ApproxDistanceGeo_Polar( double lon1deg, double lat1deg, double lon2deg, double lat2deg, double D = 0 )
    {
        double approxUnitDistSq = ApproxUnitDistSq_Polar(lon1deg, lat1deg, lon2deg, lat2deg, D);
        double c = Sqrt( approxUnitDistSq );
        return EarthAvgRadius * c;
    }

    // Might be useful to avoid taking Sqrt, when comparing to some threshold.
    // Threshold would have to be adjusted to match:  Power(threshold / EarthAvgRadius, 2)
    private static double ApproxUnitDistSq_Polar(double lon1deg, double lat1deg, double lon2deg, double lat2deg, double D = 0 )
    {
        const double HalfPi = PI / 2; //1.5707963267949;

        double lon1 = degreesToRadians(lon1deg);
        double lat1 = degreesToRadians(lat1deg);
        double lon2 = degreesToRadians(lon2deg);
        double lat2 = degreesToRadians(lat2deg);

        double a = HalfPi - lat1;
        double b = HalfPi - lat2;
        double u = a * a + b * b;
        double dlon21 = lon2 - lon1;
        double cosDeltaLon = Cos( dlon21 );
        double v = -2 * a * b * cosDeltaLon;
        // TBD: Is "Abs" necessary?  That is, is "u + v" ever negative?
        //   (I think not; "v" looks like a secondary term. Though might be round-off issue near zero when a~=b.)
        double approxUnitDistSq = Abs(u + v);

        //if (approxUnitDistSq.nearlyEquals(0, 1E-16))
        //  Helper.dubious();
        //else if (D > 0)
        //{
        //  double dba = b - a;
        //  double unitD = D / EarthAvgRadius;
        //  double unitDSq = unitD * unitD;
        //  if (approxUnitDistSq > 2 * unitDSq)
        //      Helper.dubious();
        //  else if (approxUnitDistSq * 2 < unitDSq)
        //      Helper.dubious();
        //}

        return approxUnitDistSq;
    }

    // Pythagorean Theorem with Latitude Adjustment - from Ewan Todd - https://stackoverflow.com/a/1664836/199364
    // Refined by ToolmakerSteve - https://stackoverflow.com/a/53468745/199364
    public static double ApproxDistanceGeo_PythagoreanCosLatitude( double lon1deg, double lat1deg, double lon2deg, double lat2deg, double D = 0 )
    {
        double approxDegreesSq = ApproxDegreesSq_PythagoreanCosLatitude( lon1deg, lat1deg, lon2deg, lat2deg );
        // approximate degrees on the great circle between the points.
        double d_degrees = Sqrt( approxDegreesSq );
        return d_degrees * EarthAvgMeterPerGreatCircleDegree;
    }

    public static double ApproxDegreesSq_PythagoreanCosLatitude( double lon1deg, double lat1deg, double lon2deg, double lat2deg )
    {
        double avgLatDeg = average( lat1deg , lat2deg );
        double avgLat = degreesToRadians( avgLatDeg );

        double d_ew = (lon2deg - lon1deg) * Cos( avgLat );
        double d_ns = (lat2deg - lat1deg);
        double approxDegreesSq = d_ew * d_ew + d_ns * d_ns;
        return approxDegreesSq;
    }
转瞬即逝 2024-08-11 20:31:56

我已完成使用 SQL 查询

select *, (acos(sin(input_lat* 0.01745329)*sin(lattitude *0.01745329) + cos(input_lat *0.01745329)*cos(lattitude *0.01745329)*cos((input_long -longitude)*0.01745329))* 57.29577951 )* 69.16 As D  from table_name 

I am done using SQL query

select *, (acos(sin(input_lat* 0.01745329)*sin(lattitude *0.01745329) + cos(input_lat *0.01745329)*cos(lattitude *0.01745329)*cos((input_long -longitude)*0.01745329))* 57.29577951 )* 69.16 As D  from table_name 
镜花水月 2024-08-11 20:31:56

以下是包含前面答案中讨论的三个公式的模块(以 f90 编码)。您可以将此模块放在程序的顶部
(在 PROGRAM MAIN 之前)或单独编译并在编译期间包含模块目录。以下模块包含三个公式。前两个是基于地球是球形的假设的大圆距离。

module spherical_dists

contains

subroutine great_circle_distance(lon1,lat1,lon2,lat2,dist)
  !https://en.wikipedia.org/wiki/Great-circle_distance
  ! It takes lon, lats of two points on an assumed spherical earth and
  ! calculates the distance between them along the great circle connecting the two points
  implicit none
  real,intent(in)::lon1,lon2,lat1,lat2
  real,intent(out)::dist
  real,parameter::pi=3.141592,mean_earth_radius=6371.0088
  real::lonr1,lonr2,latr1,latr2
  real::delangl,dellon
  lonr1=lon1*(pi/180.);lonr2=lon2*(pi/180.)
  latr1=lat1*(pi/180.);latr2=lat2*(pi/180.)
  dellon=lonr2-lonr1
  delangl=acos(sin(latr1)*sin(latr2)+cos(latr1)*cos(latr2)*cos(dellon))
  dist=delangl*mean_earth_radius
end subroutine

subroutine haversine_formula(lon1,lat1,lon2,lat2,dist)
  ! https://en.wikipedia.org/wiki/Haversine_formula
  ! This is similar above but numerically better conditioned for small distances
  implicit none
  real,intent(in)::lon1,lon2,lat1,lat2
  !lon, lats of two points
  real,intent(out)::dist
  real,parameter::pi=3.141592,mean_earth_radius=6371.0088
  real::lonr1,lonr2,latr1,latr2
  real::delangl,dellon,dellat,a
  ! degrees are converted to radians
  lonr1=lon1*(pi/180.);lonr2=lon2*(pi/180.)
  latr1=lat1*(pi/180.);latr2=lat2*(pi/180.)
  dellon=lonr2-lonr1 ! These dels simplify the haversine formula
  dellat=latr2-latr1
  ! The actual haversine formula
  a=(sin(dellat/2))**2+cos(latr1)*cos(latr2)*(sin(dellon/2))**2
  delangl=2*asin(sqrt(a)) !2*asin(sqrt(a))
  dist=delangl*mean_earth_radius
end subroutine  

subroutine vincenty_formula(lon1,lat1,lon2,lat2,dist)
  !https://en.wikipedia.org/wiki/Vincenty%27s_formulae
  !It's a better approximation over previous two, since it considers earth to in oblate spheroid, which better approximates the shape of the earth
  implicit none
  real,intent(in)::lon1,lon2,lat1,lat2
  real,intent(out)::dist
  real,parameter::pi=3.141592,mean_earth_radius=6371.0088
  real::lonr1,lonr2,latr1,latr2
  real::delangl,dellon,nom,denom
  lonr1=lon1*(pi/180.);lonr2=lon2*(pi/180.)
  latr1=lat1*(pi/180.);latr2=lat2*(pi/180.)
  dellon=lonr2-lonr1
  nom=sqrt((cos(latr2)*sin(dellon))**2. + (cos(latr1)*sin(latr2)-sin(latr1)*cos(latr2)*cos(dellon))**2.)
  denom=sin(latr1)*sin(latr2)+cos(latr1)*cos(latr2)*cos(dellon)
  delangl=atan2(nom,denom)
  dist=delangl*mean_earth_radius
end subroutine

end module

Following is the module (coded in f90) containing three formulas discussed in the previous answers. You can either put this module at the top of your program
(before PROGRAM MAIN) or compile it separately and include the module directory during compilation. The following module contains three formulas. First two are great-circle distances based on the assumption that earth is spherical.

module spherical_dists

contains

subroutine great_circle_distance(lon1,lat1,lon2,lat2,dist)
  !https://en.wikipedia.org/wiki/Great-circle_distance
  ! It takes lon, lats of two points on an assumed spherical earth and
  ! calculates the distance between them along the great circle connecting the two points
  implicit none
  real,intent(in)::lon1,lon2,lat1,lat2
  real,intent(out)::dist
  real,parameter::pi=3.141592,mean_earth_radius=6371.0088
  real::lonr1,lonr2,latr1,latr2
  real::delangl,dellon
  lonr1=lon1*(pi/180.);lonr2=lon2*(pi/180.)
  latr1=lat1*(pi/180.);latr2=lat2*(pi/180.)
  dellon=lonr2-lonr1
  delangl=acos(sin(latr1)*sin(latr2)+cos(latr1)*cos(latr2)*cos(dellon))
  dist=delangl*mean_earth_radius
end subroutine

subroutine haversine_formula(lon1,lat1,lon2,lat2,dist)
  ! https://en.wikipedia.org/wiki/Haversine_formula
  ! This is similar above but numerically better conditioned for small distances
  implicit none
  real,intent(in)::lon1,lon2,lat1,lat2
  !lon, lats of two points
  real,intent(out)::dist
  real,parameter::pi=3.141592,mean_earth_radius=6371.0088
  real::lonr1,lonr2,latr1,latr2
  real::delangl,dellon,dellat,a
  ! degrees are converted to radians
  lonr1=lon1*(pi/180.);lonr2=lon2*(pi/180.)
  latr1=lat1*(pi/180.);latr2=lat2*(pi/180.)
  dellon=lonr2-lonr1 ! These dels simplify the haversine formula
  dellat=latr2-latr1
  ! The actual haversine formula
  a=(sin(dellat/2))**2+cos(latr1)*cos(latr2)*(sin(dellon/2))**2
  delangl=2*asin(sqrt(a)) !2*asin(sqrt(a))
  dist=delangl*mean_earth_radius
end subroutine  

subroutine vincenty_formula(lon1,lat1,lon2,lat2,dist)
  !https://en.wikipedia.org/wiki/Vincenty%27s_formulae
  !It's a better approximation over previous two, since it considers earth to in oblate spheroid, which better approximates the shape of the earth
  implicit none
  real,intent(in)::lon1,lon2,lat1,lat2
  real,intent(out)::dist
  real,parameter::pi=3.141592,mean_earth_radius=6371.0088
  real::lonr1,lonr2,latr1,latr2
  real::delangl,dellon,nom,denom
  lonr1=lon1*(pi/180.);lonr2=lon2*(pi/180.)
  latr1=lat1*(pi/180.);latr2=lat2*(pi/180.)
  dellon=lonr2-lonr1
  nom=sqrt((cos(latr2)*sin(dellon))**2. + (cos(latr1)*sin(latr2)-sin(latr1)*cos(latr2)*cos(dellon))**2.)
  denom=sin(latr1)*sin(latr2)+cos(latr1)*cos(latr2)*cos(dellon)
  delangl=atan2(nom,denom)
  dist=delangl*mean_earth_radius
end subroutine

end module
神爱温柔 2024-08-11 20:31:56

在此页面上,您可以看到 Android Location 类中如何计算位置距离的完整代码和公式

android/location/Location.java

编辑:根据@Richard的提示,我把将链接函数的代码放入我的答案中,以避免链接无效:

private static void computeDistanceAndBearing(double lat1, double lon1,
    double lat2, double lon2, BearingDistanceCache results) {
    // Based on http://www.ngs.noaa.gov/PUBS_LIB/inverse.pdf
    // using the "Inverse Formula" (section 4)
    int MAXITERS = 20;
    // Convert lat/long to radians
    lat1 *= Math.PI / 180.0;
    lat2 *= Math.PI / 180.0;
    lon1 *= Math.PI / 180.0;
    lon2 *= Math.PI / 180.0;
    double a = 6378137.0; // WGS84 major axis
    double b = 6356752.3142; // WGS84 semi-major axis
    double f = (a - b) / a;
    double aSqMinusBSqOverBSq = (a * a - b * b) / (b * b);
    double L = lon2 - lon1;
    double A = 0.0;
    double U1 = Math.atan((1.0 - f) * Math.tan(lat1));
    double U2 = Math.atan((1.0 - f) * Math.tan(lat2));
    double cosU1 = Math.cos(U1);
    double cosU2 = Math.cos(U2);
    double sinU1 = Math.sin(U1);
    double sinU2 = Math.sin(U2);
    double cosU1cosU2 = cosU1 * cosU2;
    double sinU1sinU2 = sinU1 * sinU2;
    double sigma = 0.0;
    double deltaSigma = 0.0;
    double cosSqAlpha = 0.0;
    double cos2SM = 0.0;
    double cosSigma = 0.0;
    double sinSigma = 0.0;
    double cosLambda = 0.0;
    double sinLambda = 0.0;
    double lambda = L; // initial guess
    for (int iter = 0; iter < MAXITERS; iter++) {
        double lambdaOrig = lambda;
        cosLambda = Math.cos(lambda);
        sinLambda = Math.sin(lambda);
        double t1 = cosU2 * sinLambda;
        double t2 = cosU1 * sinU2 - sinU1 * cosU2 * cosLambda;
        double sinSqSigma = t1 * t1 + t2 * t2; // (14)
        sinSigma = Math.sqrt(sinSqSigma);
        cosSigma = sinU1sinU2 + cosU1cosU2 * cosLambda; // (15)
        sigma = Math.atan2(sinSigma, cosSigma); // (16)
        double sinAlpha = (sinSigma == 0) ? 0.0 :
            cosU1cosU2 * sinLambda / sinSigma; // (17)
        cosSqAlpha = 1.0 - sinAlpha * sinAlpha;
        cos2SM = (cosSqAlpha == 0) ? 0.0 :
            cosSigma - 2.0 * sinU1sinU2 / cosSqAlpha; // (18)
        double uSquared = cosSqAlpha * aSqMinusBSqOverBSq; // defn
        A = 1 + (uSquared / 16384.0) * // (3)
            (4096.0 + uSquared *
             (-768 + uSquared * (320.0 - 175.0 * uSquared)));
        double B = (uSquared / 1024.0) * // (4)
            (256.0 + uSquared *
             (-128.0 + uSquared * (74.0 - 47.0 * uSquared)));
        double C = (f / 16.0) *
            cosSqAlpha *
            (4.0 + f * (4.0 - 3.0 * cosSqAlpha)); // (10)
        double cos2SMSq = cos2SM * cos2SM;
        deltaSigma = B * sinSigma * // (6)
            (cos2SM + (B / 4.0) *
             (cosSigma * (-1.0 + 2.0 * cos2SMSq) -
              (B / 6.0) * cos2SM *
              (-3.0 + 4.0 * sinSigma * sinSigma) *
              (-3.0 + 4.0 * cos2SMSq)));
        lambda = L +
            (1.0 - C) * f * sinAlpha *
            (sigma + C * sinSigma *
             (cos2SM + C * cosSigma *
              (-1.0 + 2.0 * cos2SM * cos2SM))); // (11)
        double delta = (lambda - lambdaOrig) / lambda;
        if (Math.abs(delta) < 1.0e-12) {
            break;
        }
    }
    float distance = (float) (b * A * (sigma - deltaSigma));
    results.mDistance = distance;
    float initialBearing = (float) Math.atan2(cosU2 * sinLambda,
        cosU1 * sinU2 - sinU1 * cosU2 * cosLambda);
    initialBearing *= 180.0 / Math.PI;
    results.mInitialBearing = initialBearing;
    float finalBearing = (float) Math.atan2(cosU1 * sinLambda,
            -sinU1 * cosU2 + cosU1 * sinU2 * cosLambda);
    finalBearing *= 180.0 / Math.PI;
    results.mFinalBearing = finalBearing;
    results.mLat1 = lat1;
    results.mLat2 = lat2;
    results.mLon1 = lon1;
    results.mLon2 = lon2;
}

On this page you can see the whole code and formulas how distances of locations are calculated in Android Location class

android/location/Location.java

EDIT: According the hint from @Richard I put the code of the linked function into my answer, to avoid invalidated link:

private static void computeDistanceAndBearing(double lat1, double lon1,
    double lat2, double lon2, BearingDistanceCache results) {
    // Based on http://www.ngs.noaa.gov/PUBS_LIB/inverse.pdf
    // using the "Inverse Formula" (section 4)
    int MAXITERS = 20;
    // Convert lat/long to radians
    lat1 *= Math.PI / 180.0;
    lat2 *= Math.PI / 180.0;
    lon1 *= Math.PI / 180.0;
    lon2 *= Math.PI / 180.0;
    double a = 6378137.0; // WGS84 major axis
    double b = 6356752.3142; // WGS84 semi-major axis
    double f = (a - b) / a;
    double aSqMinusBSqOverBSq = (a * a - b * b) / (b * b);
    double L = lon2 - lon1;
    double A = 0.0;
    double U1 = Math.atan((1.0 - f) * Math.tan(lat1));
    double U2 = Math.atan((1.0 - f) * Math.tan(lat2));
    double cosU1 = Math.cos(U1);
    double cosU2 = Math.cos(U2);
    double sinU1 = Math.sin(U1);
    double sinU2 = Math.sin(U2);
    double cosU1cosU2 = cosU1 * cosU2;
    double sinU1sinU2 = sinU1 * sinU2;
    double sigma = 0.0;
    double deltaSigma = 0.0;
    double cosSqAlpha = 0.0;
    double cos2SM = 0.0;
    double cosSigma = 0.0;
    double sinSigma = 0.0;
    double cosLambda = 0.0;
    double sinLambda = 0.0;
    double lambda = L; // initial guess
    for (int iter = 0; iter < MAXITERS; iter++) {
        double lambdaOrig = lambda;
        cosLambda = Math.cos(lambda);
        sinLambda = Math.sin(lambda);
        double t1 = cosU2 * sinLambda;
        double t2 = cosU1 * sinU2 - sinU1 * cosU2 * cosLambda;
        double sinSqSigma = t1 * t1 + t2 * t2; // (14)
        sinSigma = Math.sqrt(sinSqSigma);
        cosSigma = sinU1sinU2 + cosU1cosU2 * cosLambda; // (15)
        sigma = Math.atan2(sinSigma, cosSigma); // (16)
        double sinAlpha = (sinSigma == 0) ? 0.0 :
            cosU1cosU2 * sinLambda / sinSigma; // (17)
        cosSqAlpha = 1.0 - sinAlpha * sinAlpha;
        cos2SM = (cosSqAlpha == 0) ? 0.0 :
            cosSigma - 2.0 * sinU1sinU2 / cosSqAlpha; // (18)
        double uSquared = cosSqAlpha * aSqMinusBSqOverBSq; // defn
        A = 1 + (uSquared / 16384.0) * // (3)
            (4096.0 + uSquared *
             (-768 + uSquared * (320.0 - 175.0 * uSquared)));
        double B = (uSquared / 1024.0) * // (4)
            (256.0 + uSquared *
             (-128.0 + uSquared * (74.0 - 47.0 * uSquared)));
        double C = (f / 16.0) *
            cosSqAlpha *
            (4.0 + f * (4.0 - 3.0 * cosSqAlpha)); // (10)
        double cos2SMSq = cos2SM * cos2SM;
        deltaSigma = B * sinSigma * // (6)
            (cos2SM + (B / 4.0) *
             (cosSigma * (-1.0 + 2.0 * cos2SMSq) -
              (B / 6.0) * cos2SM *
              (-3.0 + 4.0 * sinSigma * sinSigma) *
              (-3.0 + 4.0 * cos2SMSq)));
        lambda = L +
            (1.0 - C) * f * sinAlpha *
            (sigma + C * sinSigma *
             (cos2SM + C * cosSigma *
              (-1.0 + 2.0 * cos2SM * cos2SM))); // (11)
        double delta = (lambda - lambdaOrig) / lambda;
        if (Math.abs(delta) < 1.0e-12) {
            break;
        }
    }
    float distance = (float) (b * A * (sigma - deltaSigma));
    results.mDistance = distance;
    float initialBearing = (float) Math.atan2(cosU2 * sinLambda,
        cosU1 * sinU2 - sinU1 * cosU2 * cosLambda);
    initialBearing *= 180.0 / Math.PI;
    results.mInitialBearing = initialBearing;
    float finalBearing = (float) Math.atan2(cosU1 * sinLambda,
            -sinU1 * cosU2 + cosU1 * sinU2 * cosLambda);
    finalBearing *= 180.0 / Math.PI;
    results.mFinalBearing = finalBearing;
    results.mLat1 = lat1;
    results.mLat2 = lat2;
    results.mLon1 = lon1;
    results.mLon2 = lon2;
}
遮云壑 2024-08-11 20:31:56

只需使用距离公式 Sqrt( (x2-x1)^2 + (y2-y1)^2 )

just use the distance formula Sqrt( (x2-x1)^2 + (y2-y1)^2 )

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文