实时操作系统 (RTOS) 上的 Python

发布于 2024-08-04 18:41:36 字数 697 浏览 13 评论 0原文

我计划在 RTOS 平台上实现一个小型数据采集系统。 (无论是在 QNX 还是 RT-Linux 系统上。)

据我所知,这些工作是使用 C / C++ 执行的,以充分利用系统。然而,在我盲目地投入编码行动之前,我很想知道并想了解一些有经验的人的意见,用 Python 编写所有内容是否可行且更明智(从低级仪器接口到闪亮的图形用户界面)。如果不是,请将设计的时序关键部分与“C”混合,或者用 C 编写所有内容,甚至不添加一行 Python 代码。

或者至少使用 Python 封装 C 代码以提供对系统的更轻松的访问。

您建议我以哪种方式工作?如果您指出一些类似的设计案例和进一步的阅读材料,我将很高兴。

谢谢

注意1:之所以强调QNX,是因为我们已经拥有基于QNX 4.25的数据采集系统(M300)用于我们的大气测量实验。这是一个专有系统,我们无法访问其内部结构。进一步研究 QNX 可能对我们有利,因为 6.4 有免费的学术许可选项,附带 Python 2.5 和最新的 GCC 版本。我从未测试过 RT-Linux 系统,不知道它在稳定性和效率方面与 QNX 有何可比性,但我知道所有 Python 栖息地和非 Python 工具(如 Google Earth)的成员都认为新系统大部分时间都可以开箱即用地开发作品。

I am planning to implement a small-scale data acquisition system on an RTOS platform. (Either on a QNX or an RT-Linux system.)

As far as I know, these jobs are performed using C / C++ to get the most out of the system. However I am curious to know and want to learn some experienced people's opinions before I blindly jump into the coding action whether it would be feasible and wiser to write everything in Python (from low-level instrument interfacing through a shiny graphical user interface). If not, mixing with timing-critical parts of the design with "C", or writing everything in C and not even putting a line of Python code.

Or at least wrapping the C code using Python to provide an easier access to the system.

Which way would you advise me to work on? I would be glad if you point some similar design cases and further readings as well.

Thank you

NOTE1: The reason of emphasizing on QNX is due to we already have a QNX 4.25 based data acquisition system (M300) for our atmospheric measurement experiments. This is a proprietary system and we can't access the internals of it. Looking further on QNX might be advantageous to us since 6.4 has a free academic licensing option, comes with Python 2.5, and a recent GCC version. I have never tested a RT-Linux system, don't know how comparable it to QNX in terms of stability and efficiency, but I know that all the members of Python habitat and non-Python tools (like Google Earth) that the new system could be developed on works most of the time out-of-the-box.

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(5

嗫嚅 2024-08-11 18:41:36

我已经构建了几个全 Python 软实时 (RT) 系统,其主要周期时间从 1 毫秒到 1 秒不等。我在此过程中学到了一些基本策略和策略:

  1. 仅使用线程/多处理从主线程卸载非 RT 工作,其中队列线程之间是可以接受的,并且可以进行协作线程(无抢占式线程!)。

  2. 避免使用 GIL。这基本上意味着不仅要避免线程,而且要最大程度地避免系统调用,特别是在时间关键的操作期间,除非它们是非阻塞的。

  3. 实用时使用 C 模块。使用 C 语言(通常)会进展得更快!但主要是如果您不必编写自己的代码:请继续使用 Python,除非确实别无选择。优化 C 模块性能是一项 PITA,特别是当跨 Python-C 接口的转换成为代码中最昂贵的部分时。

  4. 使用 Python 加速器来加速您的代码。我的第一个 RT Python 项目从 Psyco 中受益匪浅(是的,我已经这样做了一段时间)。我今天坚持使用 Python 2.x 的原因之一是 PyPy:使用 LLVM 总是会更快!

  5. 当需要关键时间时,不要害怕忙碌等待。使用 time.sleep() 来“潜入”所需的时间,然后在最后 1-10 毫秒内忙等待。我已经能够通过大约 10 微秒的自计时获得可重复的性能。确保您的 Python 任务以最大操作系统优先级运行。

  6. 麻木的岩石!如果您正在进行“实时”分析或大量统计数据,那么没有什么方法可以比使用 Numpy 更快、更少地完成更多工作(更少的代码、更少的错误)。我所知道的任何其他语言都没有,包括 C/C++。如果你的大部分代码由 Numpy 调用组成,那么你的速度将会非常非常快。我迫不及待地等待 Numpy 到 PyPy 的移植完成!

  7. 了解 Python 如何以及何时进行垃圾回收。监视内存使用情况,并在需要时强制 GC。请务必在时间关键的操作期间显式禁用 GC。我所有的 RT Python 系统都是连续运行的,而且 Python 喜欢占用内存。仔细的编码可以消除几乎所有的动态内存分配,在这种情况下您可以完全禁用 GC!

  8. 尽量做到批量处理。不要以输入速率处理数据,而是尝试以输出速率处理数据,这通常要慢得多。批量处理也可以更方便地收集更高级别的统计数据。

  9. 我有没有提到使用 PyPy?嗯,值得提两次。

使用 Python 进行 RT 开发还有许多其他好处。例如,即使您相当确定您的目标语言不可能是 Python,但使用 Python 开发和调试原型,然后将其用作最终系统的模板和测试工具,也可以获得巨大的好处。多年来,我一直在使用 Python 创建系统“困难部分”的快速原型,并创建快速的测试 GUI。这就是我的第一个 RT Python 系统的诞生:原型(+Psyco)足够快,即使测试 GUI 正在运行!

-BobC

编辑:忘记提及跨平台的好处:我的代码几乎可以在任何地方运行,a)无需重新编译(或编译器依赖项,或需要交叉编译器),b)几乎没有依赖于平台的代码(主要用于杂项)文件处理和串行 I/O 之类的东西)。我可以在 Win7-x86 上进行开发,并在 Linux-ARM 上进行部署(或任何其他 POSIX 操作系统,目前所有操作系统都具有 Python)。 PyPy 目前主要是 x86,但 ARM 端口正在以令人难以置信的速度发展。

I've built several all-Python soft real-time (RT) systems, with primary cycle times from 1 ms to 1 second. There are some basic strategies and tactics I've learned along the way:

  1. Use threading/multiprocessing only to offload non-RT work from the primary thread, where queues between threads are acceptable and cooperative threading is possible (no preemptive threads!).

  2. Avoid the GIL. Which basically means not only avoiding threading, but also avoiding system calls to the greatest extent possible, especially during time-critical operations, unless they are non-blocking.

  3. Use C modules when practical. Things (usually) go faster with C! But mainly if you don't have to write your own: Stay in Python unless there really is no alternative. Optimizing C module performance is a PITA, especially when translating across the Python-C interface becomes the most expensive part of the code.

  4. Use Python accelerators to speed up your code. My first RT Python project greatly benefited from Psyco (yeah, I've been doing this a while). One reason I'm staying with Python 2.x today is PyPy: Things always go faster with LLVM!

  5. Don't be afraid to busy-wait when critical timing is needed. Use time.sleep() to 'sneak up' on the desired time, then busy-wait during the last 1-10 ms. I've been able to get repeatable performance with self-timing on the order of 10 microseconds. Be sure your Python task is run at max OS priority.

  6. Numpy ROCKS! If you are doing 'live' analytics or tons of statistics, there is NO way to get more work done faster and with less work (less code, fewer bugs) than by using Numpy. Not in any other language I know of, including C/C++. If the majority of your code consists of Numpy calls, you will be very, very fast. I can't wait for the Numpy port to PyPy to be completed!

  7. Be aware of how and when Python does garbage collection. Monitor your memory use, and force GC when needed. Be sure to explicitly disable GC during time-critical operations. All of my RT Python systems run continuously, and Python loves to hog memory. Careful coding can eliminate almost all dynamic memory allocation, in which case you can completely disable GC!

  8. Try to perform processing in batches to the greatest extent possible. Instead of processing data at the input rate, try to process data at the output rate, which is often much slower. Processing in batches also makes it more convenient to gather higher-level statistics.

  9. Did I mention using PyPy? Well, it's worth mentioning twice.

There are many other benefits to using Python for RT development. For example, even if you are fairly certain your target language can't be Python, it can pay huge benefits to develop and debug a prototype in Python, then use it as both a template and test tool for the final system. I had been using Python to create quick prototypes of the "hard parts" of a system for years, and to create quick'n'dirty test GUIs. That's how my first RT Python system came into existence: The prototype (+Psyco) was fast enough, even with the test GUI running!

-BobC

Edit: Forgot to mention the cross-platform benefits: My code runs pretty much everywhere with a) no recompilation (or compiler dependencies, or need for cross-compilers), and b) almost no platform-dependent code (mainly for misc stuff like file handling and serial I/O). I can develop on Win7-x86 and deploy on Linux-ARM (or any other POSIX OS, all of which have Python these days). PyPy is primarily x86 for now, but the ARM port is evolving at an incredible pace.

深爱成瘾 2024-08-11 18:41:36

我无法代表所有数据采集设置,但大多数都将大部分“实时操作”花费在等待要输入的数据——至少是我处理过的数据。

然后当数据进来时,您需要立即记录事件或响应它,然后回到等待的游戏。这通常是数据采集系统中最关键的部分。出于这个原因,我通常会说坚持使用 C 来处理数据采集的 I/O 部分,但没有任何特别令人信服的理由不在非时间关键部分使用 Python 。

如果你有相当宽松的要求——也许只需要毫秒精度——这会增加在Python中做所有事情的重量。就开发时间而言,如果您已经熟悉了 Python,那么如果您用 Python 完成所有工作并仅在出现瓶颈时进行重构,那么您可能会更快地获得成品。使用 Python 完成大部分工作还可以更轻松地彻底测试代码,并且根据一般经验,代码行数会更少,因此出现错误的空间也会更小。

如果您需要专门执行多任务(而不是多线程),Stackless Python 也可能是有益的。它类似于多线程,但线程(或 Stackless 行话中的微线程)不是操作系统级别的线程,而是 Python/应用程序级别的,因此微线程之间切换的开销非常大减少。您可以将 Stackless 配置为协作式或抢占式多任务。最大的缺点是阻塞 IO 通常会阻塞整个微线程集。不管怎样,考虑到 QNX 已经是一个实时系统,很难推测 Stackless 是否值得使用。

我的投票是采取尽可能多的 Python 路线——我认为这是低成本和高收益的。如果您确实需要用 C 语言重写,那么您已经有了可以使用的工作代码。

I can't speak for every data acquisition setup out there, but most of them spend most of their "real-time operations" waiting for data to come in -- at least the ones I've worked on.

Then when the data does come in, you need to immediately record the event or respond to it, and then it's back to the waiting game. That's typically the most time-critical part of a data acquisition system. For that reason, I would generally say stick with C for the I/O parts of the data acquisition, but there aren't any particularly compelling reasons not to use Python on the non-time-critical portions.

If you have fairly loose requirements -- only needs millisecond precision, perhaps -- that adds some more weight to doing everything in Python. As far as development time goes, if you're already comfortable with Python, you would probably have a finished product significantly sooner if you were to do everything in Python and refactor only as bottlenecks appear. Doing the bulk of your work in Python will also make it easier to thoroughly test your code, and as a general rule of thumb, there will be fewer lines of code and thus less room for bugs.

If you need to specifically multi-task (not multi-thread), Stackless Python might be beneficial as well. It's like multi-threading, but the threads (or tasklets, in Stackless lingo) are not OS-level threads, but Python/application-level, so the overhead of switching between tasklets is significantly reduced. You can configure Stackless to multitask cooperatively or preemptively. The biggest downside is that blocking IO will generally block your entire set of tasklets. Anyway, considering that QNX is already a real-time system, it's hard to speculate whether Stackless would be worth using.

My vote would be to take the as-much-Python-as-possible route -- I see it as low cost and high benefit. If and when you do need to rewrite in C, you'll already have working code to start from.

就像说晚安 2024-08-11 18:41:36

一般来说,反对在实时环境中使用高级语言的原因是不确定性——当你运行一个例程一次可能需要 100us;下次运行相同的例程时,它可能会决定扩展哈希表,调用 malloc,然后 malloc 向内核请求更多内存,这可以执行任何操作,从立即返回到返回毫秒后再返回后来出现错误,这些都不能从代码中立即明显(或可控)。而理论上,如果您用 C(甚至更低版本)编写,您可以证明您的关键路径将“总是”(除非流星撞击)在 X 时间内运行。

Generally the reason advanced against using a high-level language in a real-time context is uncertainty -- when you run a routine one time it might take 100us; the next time you run the same routine it might decide to extend a hash table, calling malloc, then malloc asks the kernel for more memory, which could do anything from returning instantly to returning milliseconds later to returning seconds later to erroring, none of which is immediately apparent (or controllable) from the code. Whereas theoretically if you write in C (or even lower) you can prove that your critical paths will "always" (barring meteor strike) run in X time.

成熟稳重的好男人 2024-08-11 18:41:36

我们的团队已经在 QNX 上完成了一些结合多种语言的工作,并且通过该方法取得了相当大的成功。使用 python 可以对生产力产生很大的影响,像 SWIG 和 ctypes 这样的工具可以让优化代码变得非常容易并结合不同语言的功能。

但是,如果您正在编写任何时间紧迫的内容,那么几乎可以肯定它应该用 c 编写。这样做意味着您可以避免解释语言(例如 GIL)的隐性成本(全局解释器锁) ,以及许多小型内存分配的争用。这两件事都会对应用程序的性能产生重大影响。

此外,QNX 上的 python 往往不会与其他发行版 100% 兼容(即/有时会缺少模块)。

Our team have done some work combining multiple languages on QNX and had quite a lot of success with the approach. Using python can have a big impact on productivity, and tools like SWIG and ctypes make it really easy to optimize code and combine features from the different languages.

However, if you're writing anything time critical, it should almost certainly be written in c. Doing this means you avoid the implicit costs of an interpreted langauge like the GIL (Global Interpreter Lock), and contention on many small memory allocations. Both of these things can have a big impact on how your application performs.

Also python on QNX tends not to be 100% compatible with other distributions (ie/ there are sometimes modules missing).

讽刺将军 2024-08-11 18:41:36

重要提示:Python for QNX 通常仅适用于 x86。

我确信你可以为 ppc 和其他架构编译它,但这并不是开箱即用的。

One important note: Python for QNX is generally available only for x86.

I'm sure you can compile it for ppc and other archs, but that's not going to work out of the box.

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文