javascript二叉搜索树的实现

发布于 2024-08-03 11:23:42 字数 1539 浏览 6 评论 0原文

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(5

殤城〤 2024-08-10 11:23:42

如果重要的话,我发现将此类数据存储为文字树的效率低于将其存储为已排序数组并在数组上进行二分搜索以拼接/插入元素的效率。显然,JavaScript 对象的创建并不是免费的。

还有“在数组中编码树”技巧:

[5, 3, 7, 1, null, 6, 9, null, null, null, null, null, null] 

相同

      5
     / \
    3   7
   /   / \
  1   6   9

与“children(N[i]) = N[2i+1], N[2i+2]” 。我不知道这是否真的能让你在 JavaScript 中获胜。

如果您尝试一些二叉树的替代方案,您可以在这里发布您的发现吗? :)

If it matters, I found that storing this kind of data as a literal tree was less efficient than storing it as an already-sorted array and doing binary search on the array to splice/insert elements. JavaScript object creation is not free, apparently.

There's also the ol' encode-a-tree-in-an-array trick:

[5, 3, 7, 1, null, 6, 9, null, null, null, null, null, null] 

is the same as

      5
     / \
    3   7
   /   / \
  1   6   9

i.e. children(N[i]) = N[2i+1], N[2i+2] . I don't know if that really gives you any win in JavaScript.

If you try out some alternatives to the binary tree, could you post your findings here? :)

泡沫很甜 2024-08-10 11:23:42

https://gist.github.com/alexhawkins/f993569424789f3be5db

function BinarySearchTree() {
    this.root = null;
}

BinarySearchTree.prototype.makeNode = function(value) {
    var node = {};
    node.value = value;
    node.left = null;
    node.right = null;
    return node;
};

BinarySearchTree.prototype.add = function(value) {
    var currentNode = this.makeNode(value);
    if (!this.root) {
        this.root = currentNode;
    } else {
        this.insert(currentNode);
    }
    return this;
};

BinarySearchTree.prototype.insert = function(currentNode) {
    var value = currentNode.value;
    var traverse = function(node) {
        //if value is equal to the value of the node, ignore
        //and exit function since we don't want duplicates
        if (value === node.value) {
            return;
        } else if (value > node.value) {
            if (!node.right) {
                node.right = currentNode;
                return;
            } else
                traverse(node.right);
        } else if (value < node.value) {
            if (!node.left) {
                node.left = currentNode;
                return;
            } else
                traverse(node.left);
        }
    };
    traverse(this.root);
};


BinarySearchTree.prototype.contains = function(value) {
    var node = this.root;
    var traverse = function(node) {
        if (!node) return false;
        if (value === node.value) {
            return true;
        } else if (value > node.value) {
            return traverse(node.right);
        } else if (value < node.value) {
            return traverse(node.left);
        }
    };
    return traverse(node);
};


/* BREADTH FIRST TREE TRAVERSAL */

/* Breadth First Search finds all the siblings at each level
   in order from left to right or from right to left. */

BinarySearchTree.prototype.breadthFirstLTR = function() {
    var node = this.root;
    var queue = [node];
    var result = [];
    while (node = queue.shift()) {
        result.push(node.value);
        node.left && queue.push(node.left);
        node.right && queue.push(node.right);
    }
    return result;
};


BinarySearchTree.prototype.breadthFirstRTL = function() {
    var node = this.root;
    var queue = [node];
    var result = [];
    while (node = queue.shift()) {
        result.push(node.value);
        node.right && queue.push(node.right);
        node.left && queue.push(node.left);
    }
    return result;
};

/*DEPTH FIRST TRAVERSALS*/

/*  preOrder is a type of depth-first traversal that tries 
    togo deeper in the tree before exploring siblings. It 
    returns the shallowest descendants first.

    1) Display the data part of root element (or current element)
    2) Traverse the left subtree by recursively calling the pre-order function.
    3) Traverse the right subtree by recursively calling the pre-order function. */

BinarySearchTree.prototype.preOrder = function() {
    var result = [];
    var node = this.root;
    var traverse = function(node) {
        result.push(node.value);
        node.left && traverse(node.left);
        node.right && traverse(node.right);
    };
    traverse(node);
    return result;
};

/*  inOrder traversal is a type of depth-first traversal
    that also tries to go deeper in the tree before exploring siblings.
    however, it returns the deepest descendents first

    1) Traverse the left subtree by recursively calling the pre-order function.
    2) Display the data part of root element (or current element)
    3) Traverse the right subtree by recursively calling the pre-order function. */

BinarySearchTree.prototype.inOrder = function() {
    var result = [];
    var node = this.root;
    var traverse = function(node) {
        node.left && traverse(node.left);
        result.push(node.value);
        node.right && traverse(node.right);
    };
    traverse(node);
    return result;
};

/*  postOrder traversal is a type of depth-first traversal
    that also tries to go deeper in the tree before exploring siblings.
    however, it returns the deepest descendents first

    1) Traverse the left subtree by recursively calling the pre-order function.
    2) Display the data part of root element (or current element)
    3) Traverse the right subtree by recursively calling the pre-order function. */


BinarySearchTree.prototype.postOrder = function() {
    var result = [];
    var node = this.root;
    var traverse = function(node) {
        node.left && traverse(node.left);
        node.right && traverse(node.right);
        result.push(node.value);
    };
    traverse(node);
    return result;
};

//find the left most node to find the min value of a binary tree;
BinarySearchTree.prototype.findMin = function() {
    var node = this.root;
    var traverse = function(node) {
        return !node.left ? node.value : traverse(node.left);
    };
    return traverse(node);
};

//find the right most node to find the max value of a binary tree;
BinarySearchTree.prototype.findMax = function() {
    var node = this.root;
    var traverse = function(node) {
        return !node.right ? node.value : traverse(node.right);
    };
    return traverse(node);
};


BinarySearchTree.prototype.getDepth = function() {
    var node = this.root;
    var maxDepth = 0;
    var traverse = function(node, depth) {
        if (!node) return null;
        if (node) {
            maxDepth = depth > maxDepth ? depth : maxDepth;
            traverse(node.left, depth + 1);
            traverse(node.right, depth + 1);
        }
    };
    traverse(node, 0);
    return maxDepth;
};


//Can you write me a function that returns all the averages of the nodes 
//at each level (or depth)?? with breadth-first traversal


BinarySearchTree.prototype.nodeAverages = function() {
    var node = this.root;
    var result = {};
    var depthAverages = [];

    var traverse = function(node, depth) {
        if (!node) return null;
        if (node) {
            if (!result[depth])
                result[depth] = [node.value];
            else
                result[depth].push(node.value);
        }
        //check to see if node is a leaf, depth stays the same if it is
        //otherwise increment depth for possible right and left nodes
        if (node.right || node.left) {
            traverse(node.left, depth + 1);
            traverse(node.right, depth + 1);
        }
    };
    traverse(node, 0);

    //get averages and breadthFirst
    for (var key in result) {
        var len = result[key].length;
        var depthAvg = 0;
        for (var i = 0; i < len; i++) {
            depthAvg += result[key][i];
        }
        depthAverages.push(Number((depthAvg / len).toFixed(2)));
    }
    return depthAverages;
};

//Convert a binary search tree to a linked-list in place. 
//In-order depth-first traversal.
function LinkedList() {
    this.head = null;
}

BinarySearchTree.prototype.convertToLinkedList = function() {

    var result = [];
    var node = this.root;
    if (!node) return null;

    var traverse = function(node) {
        node.left && traverse(node.left);
        result.push(node.value);
        node.right && traverse(node.right);
    };

    traverse(node);

    var makeNode = function(value) {
        var node = {};
        node.value = value;
        node.next = null;
        return node;
    };

    var list = new LinkedList();
    list.head = makeNode(result[0]);
    var current = list.head;

    for (var i = 1; i < result.length; i++) {
        var currentNode = makeNode(result[i]);
        current.next = currentNode;
        current = current.next;
    }
    return list;
};

//TESTS

var bst = new BinarySearchTree();
bst.add(40).add(25).add(78).add(10).add(32);
console.log('BS1', bst);

var bst2 = new BinarySearchTree();
bst2.add(10).add(20).add(30).add(5).add(8).add(3).add(9);
console.log('BST2', bst2);
console.log('BREADTHFIRST LTR', bst2.breadthFirstLTR());
console.log('BREADTHFIRST RTL', bst2.breadthFirstRTL());
console.log('PREORDER', bst2.preOrder());
console.log('INORDER', bst2.inOrder());
console.log('POSTORDER', bst2.postOrder());

/* 
BREADTHFIRST LTR [ 10, 5, 20, 3, 8, 30, 9 ]
BREADTHFIRST RTL [ 10, 20, 5, 30, 8, 3, 9 ]
PREORDER [ 10, 5, 3, 8, 9, 20, 30 ]
INORDER [ 3, 5, 8, 9, 10, 20, 30 ]
POSTORDER [ 3, 9, 8, 5, 30, 20, 10 ]
*/

var bst3 = new BinarySearchTree();
bst3.add('j').add('f').add('k').add('z').add('a').add('h').add('d');
console.log(bst3);
console.log('BREADTHFIRST LTR', bst3.breadthFirstLTR());
console.log('BREADTHFIRST RTL', bst3.breadthFirstRTL());
console.log('PREORDER', bst3.preOrder());
console.log('INORDER', bst3.inOrder());
console.log('POSTORDER', bst3.postOrder());

/*
BREADTHFIRST LTR [ 'j', 'f', 'k', 'a', 'h', 'z', 'd' ]
BREADTHFIRST RTL [ 'j', 'k', 'f', 'z', 'h', 'a', 'd' ]
PREORDER [ 'j', 'f', 'a', 'd', 'h', 'k', 'z' ]
INORDER [ 'a', 'd', 'f', 'h', 'j', 'k', 'z' ]
POSTORDER [ 'd', 'a', 'h', 'f', 'z', 'k', 'j' ]
 */


console.log(bst2.findMin()); // 3
console.log(bst2.findMax()); // 30
console.log(bst2.contains(15));
//bst2.add(55);
//bst2.add(65);
//bst3.add(75);
console.log(bst2);
console.log(bst2.getDepth()); // 3
console.log(bst2.add(7).add(50).add(80).add(98));
console.log(bst2.getDepth()); // 5
console.log(bst2.nodeAverages()); //[ 10, 12.5, 13.67, 22, 80, 98 ]

console.log(bst2.convertToLinkedList());
//[ 3, 5, 7, 8, 9, 10, 20, 30, 50, 80, 98 ]
//{ head: { value: 3, next: { value: 5, next: [Object] } } }

https://gist.github.com/alexhawkins/f993569424789f3be5db

function BinarySearchTree() {
    this.root = null;
}

BinarySearchTree.prototype.makeNode = function(value) {
    var node = {};
    node.value = value;
    node.left = null;
    node.right = null;
    return node;
};

BinarySearchTree.prototype.add = function(value) {
    var currentNode = this.makeNode(value);
    if (!this.root) {
        this.root = currentNode;
    } else {
        this.insert(currentNode);
    }
    return this;
};

BinarySearchTree.prototype.insert = function(currentNode) {
    var value = currentNode.value;
    var traverse = function(node) {
        //if value is equal to the value of the node, ignore
        //and exit function since we don't want duplicates
        if (value === node.value) {
            return;
        } else if (value > node.value) {
            if (!node.right) {
                node.right = currentNode;
                return;
            } else
                traverse(node.right);
        } else if (value < node.value) {
            if (!node.left) {
                node.left = currentNode;
                return;
            } else
                traverse(node.left);
        }
    };
    traverse(this.root);
};


BinarySearchTree.prototype.contains = function(value) {
    var node = this.root;
    var traverse = function(node) {
        if (!node) return false;
        if (value === node.value) {
            return true;
        } else if (value > node.value) {
            return traverse(node.right);
        } else if (value < node.value) {
            return traverse(node.left);
        }
    };
    return traverse(node);
};


/* BREADTH FIRST TREE TRAVERSAL */

/* Breadth First Search finds all the siblings at each level
   in order from left to right or from right to left. */

BinarySearchTree.prototype.breadthFirstLTR = function() {
    var node = this.root;
    var queue = [node];
    var result = [];
    while (node = queue.shift()) {
        result.push(node.value);
        node.left && queue.push(node.left);
        node.right && queue.push(node.right);
    }
    return result;
};


BinarySearchTree.prototype.breadthFirstRTL = function() {
    var node = this.root;
    var queue = [node];
    var result = [];
    while (node = queue.shift()) {
        result.push(node.value);
        node.right && queue.push(node.right);
        node.left && queue.push(node.left);
    }
    return result;
};

/*DEPTH FIRST TRAVERSALS*/

/*  preOrder is a type of depth-first traversal that tries 
    togo deeper in the tree before exploring siblings. It 
    returns the shallowest descendants first.

    1) Display the data part of root element (or current element)
    2) Traverse the left subtree by recursively calling the pre-order function.
    3) Traverse the right subtree by recursively calling the pre-order function. */

BinarySearchTree.prototype.preOrder = function() {
    var result = [];
    var node = this.root;
    var traverse = function(node) {
        result.push(node.value);
        node.left && traverse(node.left);
        node.right && traverse(node.right);
    };
    traverse(node);
    return result;
};

/*  inOrder traversal is a type of depth-first traversal
    that also tries to go deeper in the tree before exploring siblings.
    however, it returns the deepest descendents first

    1) Traverse the left subtree by recursively calling the pre-order function.
    2) Display the data part of root element (or current element)
    3) Traverse the right subtree by recursively calling the pre-order function. */

BinarySearchTree.prototype.inOrder = function() {
    var result = [];
    var node = this.root;
    var traverse = function(node) {
        node.left && traverse(node.left);
        result.push(node.value);
        node.right && traverse(node.right);
    };
    traverse(node);
    return result;
};

/*  postOrder traversal is a type of depth-first traversal
    that also tries to go deeper in the tree before exploring siblings.
    however, it returns the deepest descendents first

    1) Traverse the left subtree by recursively calling the pre-order function.
    2) Display the data part of root element (or current element)
    3) Traverse the right subtree by recursively calling the pre-order function. */


BinarySearchTree.prototype.postOrder = function() {
    var result = [];
    var node = this.root;
    var traverse = function(node) {
        node.left && traverse(node.left);
        node.right && traverse(node.right);
        result.push(node.value);
    };
    traverse(node);
    return result;
};

//find the left most node to find the min value of a binary tree;
BinarySearchTree.prototype.findMin = function() {
    var node = this.root;
    var traverse = function(node) {
        return !node.left ? node.value : traverse(node.left);
    };
    return traverse(node);
};

//find the right most node to find the max value of a binary tree;
BinarySearchTree.prototype.findMax = function() {
    var node = this.root;
    var traverse = function(node) {
        return !node.right ? node.value : traverse(node.right);
    };
    return traverse(node);
};


BinarySearchTree.prototype.getDepth = function() {
    var node = this.root;
    var maxDepth = 0;
    var traverse = function(node, depth) {
        if (!node) return null;
        if (node) {
            maxDepth = depth > maxDepth ? depth : maxDepth;
            traverse(node.left, depth + 1);
            traverse(node.right, depth + 1);
        }
    };
    traverse(node, 0);
    return maxDepth;
};


//Can you write me a function that returns all the averages of the nodes 
//at each level (or depth)?? with breadth-first traversal


BinarySearchTree.prototype.nodeAverages = function() {
    var node = this.root;
    var result = {};
    var depthAverages = [];

    var traverse = function(node, depth) {
        if (!node) return null;
        if (node) {
            if (!result[depth])
                result[depth] = [node.value];
            else
                result[depth].push(node.value);
        }
        //check to see if node is a leaf, depth stays the same if it is
        //otherwise increment depth for possible right and left nodes
        if (node.right || node.left) {
            traverse(node.left, depth + 1);
            traverse(node.right, depth + 1);
        }
    };
    traverse(node, 0);

    //get averages and breadthFirst
    for (var key in result) {
        var len = result[key].length;
        var depthAvg = 0;
        for (var i = 0; i < len; i++) {
            depthAvg += result[key][i];
        }
        depthAverages.push(Number((depthAvg / len).toFixed(2)));
    }
    return depthAverages;
};

//Convert a binary search tree to a linked-list in place. 
//In-order depth-first traversal.
function LinkedList() {
    this.head = null;
}

BinarySearchTree.prototype.convertToLinkedList = function() {

    var result = [];
    var node = this.root;
    if (!node) return null;

    var traverse = function(node) {
        node.left && traverse(node.left);
        result.push(node.value);
        node.right && traverse(node.right);
    };

    traverse(node);

    var makeNode = function(value) {
        var node = {};
        node.value = value;
        node.next = null;
        return node;
    };

    var list = new LinkedList();
    list.head = makeNode(result[0]);
    var current = list.head;

    for (var i = 1; i < result.length; i++) {
        var currentNode = makeNode(result[i]);
        current.next = currentNode;
        current = current.next;
    }
    return list;
};

//TESTS

var bst = new BinarySearchTree();
bst.add(40).add(25).add(78).add(10).add(32);
console.log('BS1', bst);

var bst2 = new BinarySearchTree();
bst2.add(10).add(20).add(30).add(5).add(8).add(3).add(9);
console.log('BST2', bst2);
console.log('BREADTHFIRST LTR', bst2.breadthFirstLTR());
console.log('BREADTHFIRST RTL', bst2.breadthFirstRTL());
console.log('PREORDER', bst2.preOrder());
console.log('INORDER', bst2.inOrder());
console.log('POSTORDER', bst2.postOrder());

/* 
BREADTHFIRST LTR [ 10, 5, 20, 3, 8, 30, 9 ]
BREADTHFIRST RTL [ 10, 20, 5, 30, 8, 3, 9 ]
PREORDER [ 10, 5, 3, 8, 9, 20, 30 ]
INORDER [ 3, 5, 8, 9, 10, 20, 30 ]
POSTORDER [ 3, 9, 8, 5, 30, 20, 10 ]
*/

var bst3 = new BinarySearchTree();
bst3.add('j').add('f').add('k').add('z').add('a').add('h').add('d');
console.log(bst3);
console.log('BREADTHFIRST LTR', bst3.breadthFirstLTR());
console.log('BREADTHFIRST RTL', bst3.breadthFirstRTL());
console.log('PREORDER', bst3.preOrder());
console.log('INORDER', bst3.inOrder());
console.log('POSTORDER', bst3.postOrder());

/*
BREADTHFIRST LTR [ 'j', 'f', 'k', 'a', 'h', 'z', 'd' ]
BREADTHFIRST RTL [ 'j', 'k', 'f', 'z', 'h', 'a', 'd' ]
PREORDER [ 'j', 'f', 'a', 'd', 'h', 'k', 'z' ]
INORDER [ 'a', 'd', 'f', 'h', 'j', 'k', 'z' ]
POSTORDER [ 'd', 'a', 'h', 'f', 'z', 'k', 'j' ]
 */


console.log(bst2.findMin()); // 3
console.log(bst2.findMax()); // 30
console.log(bst2.contains(15));
//bst2.add(55);
//bst2.add(65);
//bst3.add(75);
console.log(bst2);
console.log(bst2.getDepth()); // 3
console.log(bst2.add(7).add(50).add(80).add(98));
console.log(bst2.getDepth()); // 5
console.log(bst2.nodeAverages()); //[ 10, 12.5, 13.67, 22, 80, 98 ]

console.log(bst2.convertToLinkedList());
//[ 3, 5, 7, 8, 9, 10, 20, 30, 50, 80, 98 ]
//{ head: { value: 3, next: { value: 5, next: [Object] } } }
像你 2024-08-10 11:23:42

你可以尝试 buckets,一个 JavaScript 库,它拥有你需要的一切。

You can try buckets, a javascript library, it has everything you need.

夜未央樱花落 2024-08-10 11:23:42

二叉搜索树通常称为 BST,是一种特殊类型的树,本质上是排序的。在二叉搜索树中,每个节点都大于其左子节点,小于其右子节点。此功能可以轻松地从二叉搜索树中搜索、插入和删除节点。

Algo

//检查根节点是否为空

// 如果是则将新节点分配给根

// 如果不是则迭代。 Iterate 方法将从当前处理节点的左子节点和右子节点检查要添加的节点值。

// 如果要添加的节点值小于该节点,则移动左子节点

// 如果左子节点为空,则将新节点分配给该左子节点

// 否则调用迭代方法

// 如果要添加的节点值大于节点值移动到右子节点

// 如果右子节点为空,则将新节点分配给该右子节点

// 否则调用迭代方法

如果这有帮助,您可以在此处查找完整文章 Javascript 中的二叉搜索树插入节点实现

Binary search trees commonly knows as BST are a special type of trees which are sorted in nature. In binary search tree every node is larger than its left child and smaller than its right child. This feature makes it easy to search, insert and delete a node from binary search tree.

Algo

//Check if root node is empty or not

// If yes then assign new node to root

// If not than iterate. Iterate method will check the node value to add from left and right child of the currently processing node.

// if node value to add is lesser than the node than move tho left child

// If left child is empty than assign new node to this left child node

// else call iterate method

// IF node value to add is greater than the node value than move to the right child

// If right child is empty than assign the new node to this right child node

// else call iterate method

If this helps you can look for full article here Binary Search Tree Insert node Implementation in Javascript

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文