Z80 ASM BNF 结构...我走在正确的轨道上吗?

发布于 2024-08-02 10:04:28 字数 729 浏览 15 评论 0原文

我正在尝试学习 BNF 并尝试汇编一些 Z80 ASM 代码。由于我对这两个领域都是新手,我的问题是,我是否走在正确的道路上?我正在尝试将 Z80 ASM 的格式编写为 EBNF,以便我可以弄清楚从那里到哪里从源代码创建机器代码。目前我有以下几点:

Assignment = Identifier, ":" ;

Instruction = Opcode, [ Operand ], [ Operand ] ;

Operand = Identifier | Something* ;

Something* = "(" , Identifier, ")" ;

Identifier = Alpha, { Numeric | Alpha } ;

Opcode = Alpha, Alpha ;

Int = [ "-" ], Numeric, { Numeric } ;

Alpha = "A" | "B" | "C" | "D" | "E" | "F" | 
        "G" | "H" | "I" | "J" | "K" | "L" | 
        "M" | "N" | "O" | "P" | "Q" | "R" | 
        "S" | "T" | "U" | "V" | "W" | "X" | 
        "Y" | "Z" ;

Numeric = "0" | "1" | "2" | "3"| "4" | 
          "5" | "6" | "7" | "8" | "9" ;

如果我出错了,任何方向反馈都会很好。

I'm trying to learn BNF and attempting to assemble some Z80 ASM code. Since I'm new to both fields, my question is, am I even on the right track? I am trying to write the format of Z80 ASM as EBNF so that I can then figure out where to go from there to create machine code from the source. At the moment I have the following:

Assignment = Identifier, ":" ;

Instruction = Opcode, [ Operand ], [ Operand ] ;

Operand = Identifier | Something* ;

Something* = "(" , Identifier, ")" ;

Identifier = Alpha, { Numeric | Alpha } ;

Opcode = Alpha, Alpha ;

Int = [ "-" ], Numeric, { Numeric } ;

Alpha = "A" | "B" | "C" | "D" | "E" | "F" | 
        "G" | "H" | "I" | "J" | "K" | "L" | 
        "M" | "N" | "O" | "P" | "Q" | "R" | 
        "S" | "T" | "U" | "V" | "W" | "X" | 
        "Y" | "Z" ;

Numeric = "0" | "1" | "2" | "3"| "4" | 
          "5" | "6" | "7" | "8" | "9" ;

Any directional feedback if I am going wrong would be excellent.

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(3

与之呼应 2024-08-09 10:04:28

老式汇编程序通常在汇编程序中手工编码,并使用临时解析技术来处理汇编源代码行以生成实际的汇编代码。
当汇编语法很简单时(例如总是OPCODE REG、OPERAND),这种方法就足够好了。

现代机器具有混乱、令人讨厌的指令集,其中包含大量指令变体和操作数,这些指令集可以用复杂的语法来表达,允许多个索引寄存器参与操作数表达。允许复杂的汇编时表达式使用固定和可重定位常量以及各种类型的加法运算符使这一点变得复杂。允许条件编译、宏、结构化数据声明等的复杂汇编器都对语法提出了新的要求。通过临时方法处理所有这些语法非常困难,这就是发明解析器生成器的原因。

使用 BNF 和解析器生成器是构建现代汇编器的非常合理的方法,即使对于 Z80 等传统处理器也是如此。我已经为 Motorola 8 位机器(例如 6800/6809)构建了这样的汇编器,并准备为现代 x86 做同样的事情。我认为你正走在正确的道路上。

********** 编辑 ****************
OP 要求提供词法分析器和解析器定义的示例。
我已经在这里提供了两者。

这些是 6809 汇编器真实规格的摘录。
完整的定义是此处样本大小的 2-3 倍。

为了减少篇幅,我删除了大部分暗角的复杂内容
这就是这些定义的要点。
人们可能会对其表面上的复杂性感到沮丧。这
要点是,通过这样的定义,您试图描述
语言的形状,而不是程序化的编码。
如果您这样做,您将付出更高的复杂性
以特别的方式对所有这些进行编码,这将是很远的事
不太可维护。

了解这些定义也会有一些帮助
与高端程序分析系统一起使用
有词法分析/解析工具作为子系统,称为
DMS 软件重新工程工具包。 DMS 将自动从
构建 AST
解析器规范中的语法规则,这使得它成为
构建解析工具要容易得多。最后,
解析器规范包含所谓的“prettyprinter”
声明,允许 DMS 从 AST 重新生成源文本。
(语法的真正目的是让我们能够构建代表汇编程序的 AST
指令,然后将它们吐出以馈送到真正的汇编器!)

值得注意的一件事:词位和语法规则是如何陈述的(metasyntxax!)
不同的词法分析器/解析器生成器系统之间有所不同。这
基于 DMS 的规范语法也不例外。 DMS有比较完善的
它自己的语法规则,在此处可用的空间中实际上无法解释。您必须接受其他系统使用类似符号的想法,例如
EBNF 用于规则和词位的正则表达式变体。

鉴于OP的兴趣,他可以实现类似的词法分析器/解析器
使用任何词法分析器/解析器生成工具,例如 FLEX/YACC,
JAVACC、ANTLR、...

********** 词法分析器 **************

-- M6809.lex: Lexical Description for M6809
-- Copyright (C) 1989,1999-2002 Ira D. Baxter

%%
#mainmode Label

#macro digit "[0-9]"
#macro hexadecimaldigit "<digit>|[a-fA-F]"

#macro comment_body_character "[\u0009 \u0020-\u007E]" -- does not include NEWLINE

#macro blank "[\u0000 \ \u0009]"

#macro hblanks "<blank>+"

#macro newline "\u000d \u000a? \u000c? | \u000a \u000c?" -- form feed allowed only after newline

#macro bare_semicolon_comment "\; <comment_body_character>* "

#macro bare_asterisk_comment "\* <comment_body_character>* "

...[snip]

#macro hexadecimal_digit "<digit> | [a-fA-F]"

#macro binary_digit "[01]"

#macro squoted_character "\' [\u0021-\u007E]"

#macro string_character "[\u0009 \u0020-\u007E]"

%%Label -- (First mode) processes left hand side of line: labels, opcodes, etc.

#skip "(<blank>*<newline>)+"
#skip "(<blank>*<newline>)*<blank>+"
  << (GotoOpcodeField ?) >>

#precomment "<comment_line><newline>"

#preskip "(<blank>*<newline>)+"
#preskip "(<blank>*<newline>)*<blank>+"
  << (GotoOpcodeField ?) >>

-- Note that an apparant register name is accepted as a label in this mode
#token LABEL [STRING] "<identifier>"
  <<  (local (;; (= [TokenScan natural] 1) ; process all string characters
         (= [TokenLength natural] ?:TokenCharacterCount)=
         (= [TokenString (reference TokenBodyT)] (. ?:TokenCharacters))
         (= [Result (reference string)] (. ?:Lexeme:Literal:String:Value))
         [ThisCharacterCode natural]
         (define Ordinala #61)
         (define Ordinalf #66)
         (define OrdinalA #41)
         (define OrdinalF #46)
     );;
     (;; (= (@ Result) `') ; start with empty string
     (while (<= TokenScan TokenLength)
      (;;   (= ThisCharacterCode (coerce natural TokenString:TokenScan))  
        (+= TokenScan) ; bump past character
        (ifthen (>= ThisCharacterCode Ordinala)
           (-= ThisCharacterCode #20) ; fold to upper case
        )ifthen
        (= (@ Result) (append (@ Result) (coerce character ThisCharacterCode)))=

        );;
     )while
     );;
  )local
  (= ?:Lexeme:Literal:String:Format (LiteralFormat:MakeCompactStringLiteralFormat 0))  ; nothing interesting in string
  (GotoLabelList ?)
  >>

%%OpcodeField

#skip "<hblanks>"
  << (GotoEOLComment ?) >>
#ifnotoken
  << (GotoEOLComment ?) >>

-- Opcode field tokens
#token 'ABA'       "[aA][bB][aA]"
   << (GotoEOLComment ?) >>
#token 'ABX'       "[aA][bB][xX]"
   << (GotoEOLComment ?) >>
#token 'ADC'       "[aA][dD][cC]"
   << (GotoABregister ?) >>
#token 'ADCA'      "[aA][dD][cC][aA]"
   << (GotoOperand ?) >>
#token 'ADCB'      "[aA][dD][cC][bB]"
   << (GotoOperand ?) >>
#token 'ADCD'      "[aA][dD][cC][dD]"
   << (GotoOperand ?) >>
#token 'ADD'       "[aA][dD][dD]"
   << (GotoABregister ?) >>
#token 'ADDA'      "[aA][dD][dD][aA]"
   << (GotoOperand ?) >>
#token 'ADDB'      "[aA][dD][dD][bB]"
   << (GotoOperand ?) >>
#token 'ADDD'      "[aA][dD][dD][dD]"
   << (GotoOperand ?) >>
#token 'AND'       "[aA][nN][dD]"
   << (GotoABregister ?) >>
#token 'ANDA'      "[aA][nN][dD][aA]"
   << (GotoOperand ?) >>
#token 'ANDB'      "[aA][nN][dD][bB]"
   << (GotoOperand ?) >>
#token 'ANDCC'     "[aA][nN][dD][cC][cC]"
   << (GotoRegister ?) >>
...[long list of opcodes snipped]

#token IDENTIFIER [STRING] "<identifier>"
  <<  (local (;; (= [TokenScan natural] 1) ; process all string characters
         (= [TokenLength natural] ?:TokenCharacterCount)=
         (= [TokenString (reference TokenBodyT)] (. ?:TokenCharacters))
         (= [Result (reference string)] (. ?:Lexeme:Literal:String:Value))
         [ThisCharacterCode natural]
         (define Ordinala #61)
         (define Ordinalf #66)
         (define OrdinalA #41)
         (define OrdinalF #46)
     );;
     (;; (= (@ Result) `') ; start with empty string
     (while (<= TokenScan TokenLength)
      (;;   (= ThisCharacterCode (coerce natural TokenString:TokenScan))  
        (+= TokenScan) ; bump past character
        (ifthen (>= ThisCharacterCode Ordinala)
           (-= ThisCharacterCode #20) ; fold to upper case
        )ifthen
        (= (@ Result) (append (@ Result) (coerce character ThisCharacterCode)))=

        );;
     )while
     );;
  )local
  (= ?:Lexeme:Literal:String:Format (LiteralFormat:MakeCompactStringLiteralFormat 0))  ; nothing interesting in string
  (GotoOperandField ?)
  >>

#token '#'   "\#" -- special constant introduction (FDB)
   << (GotoDataField ?) >>

#token NUMBER [NATURAL] "<decimal_number>"
  << (local [format LiteralFormat:NaturalLiteralFormat]
    (;; (= ?:Lexeme:Literal:Natural:Value (ConvertDecimalTokenStringToNatural (. format) ? 0 0))
    (= ?:Lexeme:Literal:Natural:Format (LiteralFormat:MakeCompactNaturalLiteralFormat format))
    );;
 )local
 (GotoOperandField ?)
  >>

#token NUMBER [NATURAL] "\$ <hexadecimal_digit>+"
  << (local [format LiteralFormat:NaturalLiteralFormat]
    (;; (= ?:Lexeme:Literal:Natural:Value (ConvertHexadecimalTokenStringToNatural (. format) ? 1 0))
    (= ?:Lexeme:Literal:Natural:Format (LiteralFormat:MakeCompactNaturalLiteralFormat format))
    );;
 )local
 (GotoOperandField ?)
  >>

#token NUMBER [NATURAL] "\% <binary_digit>+"
  << (local [format LiteralFormat:NaturalLiteralFormat]
    (;; (= ?:Lexeme:Literal:Natural:Value (ConvertBinaryTokenStringToNatural (. format) ? 1 0))
    (= ?:Lexeme:Literal:Natural:Format (LiteralFormat:MakeCompactNaturalLiteralFormat format))
    );;
 )local
 (GotoOperandField ?)
  >>

#token CHARACTER [CHARACTER] "<squoted_character>"
  <<  (= ?:Lexeme:Literal:Character:Value (TokenStringCharacter ? 2))
  (= ?:Lexeme:Literal:Character:Format (LiteralFormat:MakeCompactCharacterLiteralFormat 0 0)) ; nothing special about character
  (GotoOperandField ?)
  >>


%%OperandField

#skip "<hblanks>"
  << (GotoEOLComment ?) >>
#ifnotoken
  << (GotoEOLComment ?) >>

-- Tokens signalling switch to index register modes
#token ','   "\,"
   <<(GotoRegisterField ?)>>
#token '['   "\["
   <<(GotoRegisterField ?)>>

-- Operators for arithmetic syntax
#token '!!'  "\!\!"
#token '!'   "\!"
#token '##'  "\#\#"
#token '#'   "\#"
#token '&'   "\&"
#token '('   "\("
#token ')'   "\)"
#token '*'   "\*"
#token '+'   "\+"
#token '-'   "\-"
#token '/'   "\/"
#token '//'   "\/\/"
#token '<'   "\<"
#token '<'   "\<" 
#token '<<'  "\<\<"
#token '<='  "\<\="
#token '</'  "\<\/"
#token '='   "\="
#token '>'   "\>"
#token '>'   "\>"
#token '>='  "\>\="
#token '>>'  "\>\>"
#token '>/'  "\>\/"
#token '\\'  "\\"
#token '|'   "\|"
#token '||'  "\|\|"

#token NUMBER [NATURAL] "<decimal_number>"
  << (local [format LiteralFormat:NaturalLiteralFormat]
    (;; (= ?:Lexeme:Literal:Natural:Value (ConvertDecimalTokenStringToNatural (. format) ? 0 0))
    (= ?:Lexeme:Literal:Natural:Format (LiteralFormat:MakeCompactNaturalLiteralFormat format))
    );;
 )local
  >>

#token NUMBER [NATURAL] "\$ <hexadecimal_digit>+"
  << (local [format LiteralFormat:NaturalLiteralFormat]
    (;; (= ?:Lexeme:Literal:Natural:Value (ConvertHexadecimalTokenStringToNatural (. format) ? 1 0))
    (= ?:Lexeme:Literal:Natural:Format (LiteralFormat:MakeCompactNaturalLiteralFormat format))
    );;
 )local
  >>

#token NUMBER [NATURAL] "\% <binary_digit>+"
  << (local [format LiteralFormat:NaturalLiteralFormat]
    (;; (= ?:Lexeme:Literal:Natural:Value (ConvertBinaryTokenStringToNatural (. format) ? 1 0))
    (= ?:Lexeme:Literal:Natural:Format (LiteralFormat:MakeCompactNaturalLiteralFormat format))
    );;
 )local
  >>

-- Notice that an apparent register is accepted as a label in this mode
#token IDENTIFIER [STRING] "<identifier>"
  <<  (local (;; (= [TokenScan natural] 1) ; process all string characters
         (= [TokenLength natural] ?:TokenCharacterCount)=
         (= [TokenString (reference TokenBodyT)] (. ?:TokenCharacters))
         (= [Result (reference string)] (. ?:Lexeme:Literal:String:Value))
         [ThisCharacterCode natural]
         (define Ordinala #61)
         (define Ordinalf #66)
         (define OrdinalA #41)
         (define OrdinalF #46)
     );;
     (;; (= (@ Result) `') ; start with empty string
     (while (<= TokenScan TokenLength)
      (;;   (= ThisCharacterCode (coerce natural TokenString:TokenScan))  
        (+= TokenScan) ; bump past character
        (ifthen (>= ThisCharacterCode Ordinala)
           (-= ThisCharacterCode #20) ; fold to upper case
        )ifthen
        (= (@ Result) (append (@ Result) (coerce character ThisCharacterCode)))=

        );;
     )while
     );;
  )local
  (= ?:Lexeme:Literal:String:Format (LiteralFormat:MakeCompactStringLiteralFormat 0))  ; nothing interesting in string
  >>

%%Register -- operand field for TFR, ANDCC, ORCC, EXG opcodes

#skip "<hblanks>"
#ifnotoken << (GotoRegisterField ?) >>

%%RegisterField -- handles registers and indexing mode syntax
-- In this mode, names that look like registers are recognized as registers

#skip "<hblanks>"
  << (GotoEOLComment ?) >>
#ifnotoken
  << (GotoEOLComment ?) >>

#token '['   "\["
#token ']'   "\]"
#token '--'  "\-\-"
#token '++'  "\+\+"

#token 'A'      "[aA]"
#token 'B'      "[bB]"
#token 'CC'     "[cC][cC]"
#token 'DP'     "[dD][pP] | [dD][pP][rR]" -- DPR shouldnt be needed, but found one instance
#token 'D'      "[dD]"
#token 'Z'      "[zZ]"

-- Index register designations
#token 'X'      "[xX]"
#token 'Y'      "[yY]"
#token 'U'      "[uU]"
#token 'S'      "[sS]"
#token 'PCR'    "[pP][cC][rR]"
#token 'PC'     "[pP][cC]"

#token ','    "\,"

-- Operators for arithmetic syntax
#token '!!'  "\!\!"
#token '!'   "\!"
#token '##'  "\#\#"
#token '#'   "\#"
#token '&'   "\&"
#token '('   "\("
#token ')'   "\)"
#token '*'   "\*"
#token '+'   "\+"
#token '-'   "\-"
#token '/'   "\/"
#token '<'   "\<"
#token '<'   "\<" 
#token '<<'  "\<\<"
#token '<='  "\<\="
#token '<|'  "\<\|"
#token '='   "\="
#token '>'   "\>"
#token '>'   "\>"
#token '>='  "\>\="
#token '>>'  "\>\>"
#token '>|'  "\>\|"
#token '\\'  "\\"
#token '|'   "\|"
#token '||'  "\|\|"

#token NUMBER [NATURAL] "<decimal_number>"
  << (local [format LiteralFormat:NaturalLiteralFormat]
    (;; (= ?:Lexeme:Literal:Natural:Value (ConvertDecimalTokenStringToNatural (. format) ? 0 0))
    (= ?:Lexeme:Literal:Natural:Format (LiteralFormat:MakeCompactNaturalLiteralFormat format))
    );;
 )local
  >>

... [snip]

%% -- end M6809.lex

**************** 解析器 * **************

-- M6809.ATG: Motorola 6809 assembly code parser
-- (C) Copyright 1989;1999-2002 Ira D. Baxter; All Rights Reserved

m6809 = sourcelines ;

sourcelines = ;
sourcelines = sourcelines sourceline EOL ;
  <<PrettyPrinter>>: { V(CV(sourcelines[1]),H(sourceline,A<eol>(EOL))); }

-- leading opcode field symbol should be treated as keyword.

sourceline = ;
sourceline = labels ;
sourceline = optional_labels 'EQU' expression ;
  <<PrettyPrinter>>: { H(optional_labels,A<opcode>('EQU'),A<operand>(expression)); }
sourceline = LABEL 'SET' expression ;
  <<PrettyPrinter>>: { H(A<firstlabel>(LABEL),A<opcode>('SET'),A<operand>(expression)); }
sourceline = optional_label instruction ;
  <<PrettyPrinter>>: { H(optional_label,instruction); }
sourceline = optional_label optlabelleddirective ;
  <<PrettyPrinter>>: { H(optional_label,optlabelleddirective); }
sourceline = optional_label implicitdatadirective ;
  <<PrettyPrinter>>: { H(optional_label,implicitdatadirective); }
sourceline = unlabelleddirective ;
sourceline = '?ERROR' ;
  <<PrettyPrinter>>: { A<opcode>('?ERROR'); }

optional_label = labels ;
optional_label = LABEL ':' ;
  <<PrettyPrinter>>: { H(A<firstlabel>(LABEL),':'); }
optional_label = ;

optional_labels = ;
optional_labels = labels ;
labels = LABEL ;
  <<PrettyPrinter>>: { A<firstlabel>(LABEL); }
labels = labels ',' LABEL ;
  <<PrettyPrinter>>: { H(labels[1],',',A<otherlabels>(LABEL)); }

unlabelleddirective = 'END' ;
  <<PrettyPrinter>>: { A<opcode>('END'); }
unlabelleddirective = 'END' expression ;
  <<PrettyPrinter>>: { H(A<opcode>('END'),A<operand>(expression)); }
unlabelleddirective = 'IF' expression EOL conditional ;
  <<PrettyPrinter>>: { V(H(A<opcode>('IF'),H(A<operand>(expression),A<eol>(EOL))),CV(conditional)); }
unlabelleddirective = 'IFDEF' IDENTIFIER EOL conditional ;
  <<PrettyPrinter>>: { V(H(A<opcode>('IFDEF'),H(A<operand>(IDENTIFIER),A<eol>(EOL))),CV(conditional)); }
unlabelleddirective = 'IFUND' IDENTIFIER EOL conditional ;
  <<PrettyPrinter>>: { V(H(A<opcode>('IFUND'),H(A<operand>(IDENTIFIER),A<eol>(EOL))),CV(conditional)); }
unlabelleddirective = 'INCLUDE' FILENAME ;
  <<PrettyPrinter>>: { H(A<opcode>('INCLUDE'),A<operand>(FILENAME)); }
unlabelleddirective = 'LIST' expression ;
  <<PrettyPrinter>>: { H(A<opcode>('LIST'),A<operand>(expression)); }
unlabelleddirective = 'NAME' IDENTIFIER ;
  <<PrettyPrinter>>: { H(A<opcode>('NAME'),A<operand>(IDENTIFIER)); }
unlabelleddirective = 'ORG' expression ;
  <<PrettyPrinter>>: { H(A<opcode>('ORG'),A<operand>(expression)); }
unlabelleddirective = 'PAGE' ;
  <<PrettyPrinter>>: { A<opcode>('PAGE'); }
unlabelleddirective = 'PAGE' HEADING ;
  <<PrettyPrinter>>: { H(A<opcode>('PAGE'),A<operand>(HEADING)); }
unlabelleddirective = 'PCA' expression ;
  <<PrettyPrinter>>: { H(A<opcode>('PCA'),A<operand>(expression)); }
unlabelleddirective = 'PCC' expression ;
  <<PrettyPrinter>>: { H(A<opcode>('PCC'),A<operand>(expression)); }
unlabelleddirective = 'PSR' expression ;
  <<PrettyPrinter>>: { H(A<opcode>('PSR'),A<operand>(expression)); }
unlabelleddirective = 'TABS' numberlist ;
  <<PrettyPrinter>>: { H(A<opcode>('TABS'),A<operand>(numberlist)); }
unlabelleddirective = 'TITLE' HEADING ;
  <<PrettyPrinter>>: { H(A<opcode>('TITLE'),A<operand>(HEADING)); }
unlabelleddirective = 'WITH' settings ;
  <<PrettyPrinter>>: { H(A<opcode>('WITH'),A<operand>(settings)); }

settings = setting ;
settings = settings ',' setting ;
  <<PrettyPrinter>>: { H*; }
setting = 'WI' '=' NUMBER ;
  <<PrettyPrinter>>: { H*; }
setting = 'DE' '=' NUMBER ;
  <<PrettyPrinter>>: { H*; }
setting = 'M6800' ;
setting = 'M6801' ;
setting = 'M6809' ;
setting = 'M6811' ;

-- collects lines of conditional code into blocks
conditional = 'ELSEIF' expression EOL conditional ;
  <<PrettyPrinter>>: { V(H(A<opcode>('ELSEIF'),H(A<operand>(expression),A<eol>(EOL))),CV(conditional[1])); }
conditional = 'ELSE' EOL else ;
  <<PrettyPrinter>>: { V(H(A<opcode>('ELSE'),A<eol>(EOL)),CV(else)); }
conditional = 'FIN' ;
  <<PrettyPrinter>>: { A<opcode>('FIN'); }
conditional = sourceline EOL conditional ;
  <<PrettyPrinter>>: { V(H(sourceline,A<eol>(EOL)),CV(conditional[1])); }

else = 'FIN' ;
  <<PrettyPrinter>>: { A<opcode>('FIN'); }
else = sourceline EOL else ;
  <<PrettyPrinter>>: { V(H(sourceline,A<eol>(EOL)),CV(else[1])); }

-- keyword-less directive, generates data tables

implicitdatadirective = implicitdatadirective ',' implicitdataitem ;
  <<PrettyPrinter>>: { H*; }
implicitdatadirective = implicitdataitem ;

implicitdataitem = '#' expression ;
  <<PrettyPrinter>>: { A<operand>(H('#',expression)); }
implicitdataitem = '+' expression ;
  <<PrettyPrinter>>: { A<operand>(H('+',expression)); }
implicitdataitem = '-' expression ;
  <<PrettyPrinter>>: { A<operand>(H('-',expression)); }
implicitdataitem = expression ;
  <<PrettyPrinter>>: { A<operand>(expression); }
implicitdataitem = STRING ;
  <<PrettyPrinter>>: { A<operand>(STRING); }

-- instructions valid for m680C (see Software Dynamics ASM manual)
instruction = 'ABA' ;
  <<PrettyPrinter>>: { A<opcode>('ABA'); }
instruction = 'ABX' ;
  <<PrettyPrinter>>: { A<opcode>('ABX'); }

instruction = 'ADC' 'A' operandfetch ;
  <<PrettyPrinter>>: { H(A<opcode>(H('ADC','A')),A<operand>(operandfetch)); }
instruction = 'ADC' 'B' operandfetch ;
  <<PrettyPrinter>>: { H(A<opcode>(H('ADC','B')),A<operand>(operandfetch)); }
instruction = 'ADCA' operandfetch ;
  <<PrettyPrinter>>: { H(A<opcode>('ADCA'),A<operand>(operandfetch)); }
instruction = 'ADCB' operandfetch ;
  <<PrettyPrinter>>: { H(A<opcode>('ADCB'),A<operand>(operandfetch)); }
instruction = 'ADCD' operandfetch ;
  <<PrettyPrinter>>: { H(A<opcode>('ADCD'),A<operand>(operandfetch)); }

instruction = 'ADD' 'A' operandfetch ;
  <<PrettyPrinter>>: { H(A<opcode>(H('ADD','A')),A<operand>(operandfetch)); }
instruction = 'ADD' 'B' operandfetch ;
  <<PrettyPrinter>>: { H(A<opcode>(H('ADD','B')),A<operand>(operandfetch)); }
instruction = 'ADDA' operandfetch ;
  <<PrettyPrinter>>: { H(A<opcode>('ADDA'),A<operand>(operandfetch)); }

[..snip...]

-- condition code mask for ANDCC and ORCC
conditionmask = '#' expression ;
  <<PrettyPrinter>>: { H*; }
conditionmask = expression ;

target = expression ;

operandfetch = '#' expression ; --immediate
  <<PrettyPrinter>>: { H*; }

operandfetch = memoryreference ;

operandstore = memoryreference ;

memoryreference = '[' indexedreference ']' ;
  <<PrettyPrinter>>: { H*; }
memoryreference = indexedreference ;

indexedreference = offset ;
indexedreference = offset ',' indexregister ;
  <<PrettyPrinter>>: { H*; }
indexedreference = ',' indexregister ;
  <<PrettyPrinter>>: { H*; }
indexedreference = ',' '--' indexregister ;
  <<PrettyPrinter>>: { H*; }
indexedreference = ',' '-' indexregister ;
  <<PrettyPrinter>>: { H*; }
indexedreference = ',' indexregister '++' ;
  <<PrettyPrinter>>: { H*; }
indexedreference = ',' indexregister '+' ;
  <<PrettyPrinter>>: { H*; }

offset = '>' expression ; -- page zero ref
  <<PrettyPrinter>>: { H*; }
offset = '<' expression ; -- long reference
  <<PrettyPrinter>>: { H*; }
offset = expression ;
offset = 'A' ;
offset = 'B' ;
offset = 'D' ;

registerlist = registername ;
registerlist = registerlist ',' registername ;
  <<PrettyPrinter>>: { H*; }

registername = 'A' ;
registername = 'B' ;
registername = 'CC' ;
registername = 'DP' ;
registername = 'D' ;
registername = 'Z' ;
registername = indexregister ;

indexregister = 'X' ;
indexregister = 'Y' ;
indexregister = 'U' ;  -- not legal on M6811
indexregister = 'S' ;
indexregister = 'PCR' ;
indexregister = 'PC' ;

expression = sum '=' sum ;
  <<PrettyPrinter>>: { H*; }
expression = sum '<<' sum ;
  <<PrettyPrinter>>: { H*; }
expression = sum '</' sum ;
  <<PrettyPrinter>>: { H*; }
expression = sum '<=' sum ;
  <<PrettyPrinter>>: { H*; }
expression = sum '<' sum ;
  <<PrettyPrinter>>: { H*; }
expression = sum '>>' sum ;
  <<PrettyPrinter>>: { H*; }
expression = sum '>/' sum ;
  <<PrettyPrinter>>: { H*; }
expression = sum '>=' sum ;
  <<PrettyPrinter>>: { H*; }
expression = sum '>' sum ;
  <<PrettyPrinter>>: { H*; }
expression = sum '#' sum ;
  <<PrettyPrinter>>: { H*; }
expression = sum ;

sum = product ;
sum = sum '+' product ;
  <<PrettyPrinter>>: { H*; }
sum = sum '-' product ;
  <<PrettyPrinter>>: { H*; }
sum = sum '!' product ;
  <<PrettyPrinter>>: { H*; }
sum = sum '!!' product ;
  <<PrettyPrinter>>: { H*; }

product = term '*' product ;
  <<PrettyPrinter>>: { H*; }
product = term '||' product ; -- wrong?
  <<PrettyPrinter>>: { H*; }
product = term '/' product ;
  <<PrettyPrinter>>: { H*; }
product = term '//' product ;
  <<PrettyPrinter>>: { H*; }
product = term '&' product ;
  <<PrettyPrinter>>: { H*; }
product = term '##' product ;
  <<PrettyPrinter>>: { H*; }
product = term ;

term = '+' term ;
  <<PrettyPrinter>>: { H*; }
term = '-' term ; 
  <<PrettyPrinter>>: { H*; }
term = '\\' term ; -- complement
  <<PrettyPrinter>>: { H*; }
term = '&' term ; -- not

term = IDENTIFIER ;
term = NUMBER ;
term = CHARACTER ;
term = '*' ;
term = '(' expression ')' ;
  <<PrettyPrinter>>: { H*; }

numberlist = NUMBER ;
numberlist = numberlist ',' NUMBER ;
  <<PrettyPrinter>>: { H*; }

Old-school assemblers were typically hand-coded in assembler and used adhoc parsing techniques to process assembly source lines to produce actual assembler code.
When assembler syntax is simple (e.g. always OPCODE REG, OPERAND) this worked well enough.

Modern machines have messy, nasty instruction sets with lots of instruction variations and operands, which may be expressed with complex syntax allowing multiple index registers to participate in the operand expression. Allowing sophisticated assembly-time expressions with fixed and relocatable constants with various types of addition operators complicates this. Sophisticated assemblers allowing conditional compilation, macros, structured data declarations, etc. all add new demands on syntax. Processing all this syntax by ad hoc methods is very hard and is the reason that parser generators were invented.

Using a BNF and a parser generator is very reasonable way to build a modern assembler, even for a legacy processor such as the Z80. I have built such assemblers for Motorola 8 bit machines such as the 6800/6809, and am getting ready to do the same for a modern x86. I think you're headed down exactly the right path.

********** EDIT ****************
The OP asked for example lexer and parser definitions.
I've provided both here.

These are excerpts from real specifications for a 6809 asssembler.
The complete definitions are 2-3x the size of the samples here.

To keep space down, I have edited out much of the dark-corner complexity
which is the point of these definitions.
One might be dismayed by the apparant complexity; the
point is that with such definitions, you are trying to describe the
shape of the language, not code it procedurally.
You will pay a significantly higher complexity if you
code all this in an ad hoc manner, and it will be far
less maintainable.

It will also be of some help to know that these definitions
are used with a high-end program analysis system that
has lexing/parsing tools as subsystems, called the
The DMS Software Reengineering Toolkit. DMS will automatically build ASTs from the
grammar rules in the parser specfication, which makes it a
lot easier to buid parsing tools. Lastly,
the parser specification contains so-called "prettyprinter"
declarations, which allows DMS to regenreate source text from the ASTs.
(The real purpose of the grammer was to allow us to build ASTs representing assembler
instructions, and then spit them out to be fed to a real assembler!)

One thing of note: how lexemes and grammar rules are stated (the metasyntxax!)
varies somewhat between different lexer/parser generator systems. The
syntax of DMS-based specifications is no exception. DMS has relatively sophisticated
grammar rules of its own, that really aren't practical to explain in the space available here. You'll have to live with idea that other systems use similar notations, for
EBNF for rules and and regular expression variants for lexemes.

Given the OP's interests, he can implement similar lexer/parsers
with any lexer/parser generator tool, e.g., FLEX/YACC,
JAVACC, ANTLR, ...

********** LEXER **************

-- M6809.lex: Lexical Description for M6809
-- Copyright (C) 1989,1999-2002 Ira D. Baxter

%%
#mainmode Label

#macro digit "[0-9]"
#macro hexadecimaldigit "<digit>|[a-fA-F]"

#macro comment_body_character "[\u0009 \u0020-\u007E]" -- does not include NEWLINE

#macro blank "[\u0000 \ \u0009]"

#macro hblanks "<blank>+"

#macro newline "\u000d \u000a? \u000c? | \u000a \u000c?" -- form feed allowed only after newline

#macro bare_semicolon_comment "\; <comment_body_character>* "

#macro bare_asterisk_comment "\* <comment_body_character>* "

...[snip]

#macro hexadecimal_digit "<digit> | [a-fA-F]"

#macro binary_digit "[01]"

#macro squoted_character "\' [\u0021-\u007E]"

#macro string_character "[\u0009 \u0020-\u007E]"

%%Label -- (First mode) processes left hand side of line: labels, opcodes, etc.

#skip "(<blank>*<newline>)+"
#skip "(<blank>*<newline>)*<blank>+"
  << (GotoOpcodeField ?) >>

#precomment "<comment_line><newline>"

#preskip "(<blank>*<newline>)+"
#preskip "(<blank>*<newline>)*<blank>+"
  << (GotoOpcodeField ?) >>

-- Note that an apparant register name is accepted as a label in this mode
#token LABEL [STRING] "<identifier>"
  <<  (local (;; (= [TokenScan natural] 1) ; process all string characters
         (= [TokenLength natural] ?:TokenCharacterCount)=
         (= [TokenString (reference TokenBodyT)] (. ?:TokenCharacters))
         (= [Result (reference string)] (. ?:Lexeme:Literal:String:Value))
         [ThisCharacterCode natural]
         (define Ordinala #61)
         (define Ordinalf #66)
         (define OrdinalA #41)
         (define OrdinalF #46)
     );;
     (;; (= (@ Result) `') ; start with empty string
     (while (<= TokenScan TokenLength)
      (;;   (= ThisCharacterCode (coerce natural TokenString:TokenScan))  
        (+= TokenScan) ; bump past character
        (ifthen (>= ThisCharacterCode Ordinala)
           (-= ThisCharacterCode #20) ; fold to upper case
        )ifthen
        (= (@ Result) (append (@ Result) (coerce character ThisCharacterCode)))=

        );;
     )while
     );;
  )local
  (= ?:Lexeme:Literal:String:Format (LiteralFormat:MakeCompactStringLiteralFormat 0))  ; nothing interesting in string
  (GotoLabelList ?)
  >>

%%OpcodeField

#skip "<hblanks>"
  << (GotoEOLComment ?) >>
#ifnotoken
  << (GotoEOLComment ?) >>

-- Opcode field tokens
#token 'ABA'       "[aA][bB][aA]"
   << (GotoEOLComment ?) >>
#token 'ABX'       "[aA][bB][xX]"
   << (GotoEOLComment ?) >>
#token 'ADC'       "[aA][dD][cC]"
   << (GotoABregister ?) >>
#token 'ADCA'      "[aA][dD][cC][aA]"
   << (GotoOperand ?) >>
#token 'ADCB'      "[aA][dD][cC][bB]"
   << (GotoOperand ?) >>
#token 'ADCD'      "[aA][dD][cC][dD]"
   << (GotoOperand ?) >>
#token 'ADD'       "[aA][dD][dD]"
   << (GotoABregister ?) >>
#token 'ADDA'      "[aA][dD][dD][aA]"
   << (GotoOperand ?) >>
#token 'ADDB'      "[aA][dD][dD][bB]"
   << (GotoOperand ?) >>
#token 'ADDD'      "[aA][dD][dD][dD]"
   << (GotoOperand ?) >>
#token 'AND'       "[aA][nN][dD]"
   << (GotoABregister ?) >>
#token 'ANDA'      "[aA][nN][dD][aA]"
   << (GotoOperand ?) >>
#token 'ANDB'      "[aA][nN][dD][bB]"
   << (GotoOperand ?) >>
#token 'ANDCC'     "[aA][nN][dD][cC][cC]"
   << (GotoRegister ?) >>
...[long list of opcodes snipped]

#token IDENTIFIER [STRING] "<identifier>"
  <<  (local (;; (= [TokenScan natural] 1) ; process all string characters
         (= [TokenLength natural] ?:TokenCharacterCount)=
         (= [TokenString (reference TokenBodyT)] (. ?:TokenCharacters))
         (= [Result (reference string)] (. ?:Lexeme:Literal:String:Value))
         [ThisCharacterCode natural]
         (define Ordinala #61)
         (define Ordinalf #66)
         (define OrdinalA #41)
         (define OrdinalF #46)
     );;
     (;; (= (@ Result) `') ; start with empty string
     (while (<= TokenScan TokenLength)
      (;;   (= ThisCharacterCode (coerce natural TokenString:TokenScan))  
        (+= TokenScan) ; bump past character
        (ifthen (>= ThisCharacterCode Ordinala)
           (-= ThisCharacterCode #20) ; fold to upper case
        )ifthen
        (= (@ Result) (append (@ Result) (coerce character ThisCharacterCode)))=

        );;
     )while
     );;
  )local
  (= ?:Lexeme:Literal:String:Format (LiteralFormat:MakeCompactStringLiteralFormat 0))  ; nothing interesting in string
  (GotoOperandField ?)
  >>

#token '#'   "\#" -- special constant introduction (FDB)
   << (GotoDataField ?) >>

#token NUMBER [NATURAL] "<decimal_number>"
  << (local [format LiteralFormat:NaturalLiteralFormat]
    (;; (= ?:Lexeme:Literal:Natural:Value (ConvertDecimalTokenStringToNatural (. format) ? 0 0))
    (= ?:Lexeme:Literal:Natural:Format (LiteralFormat:MakeCompactNaturalLiteralFormat format))
    );;
 )local
 (GotoOperandField ?)
  >>

#token NUMBER [NATURAL] "\$ <hexadecimal_digit>+"
  << (local [format LiteralFormat:NaturalLiteralFormat]
    (;; (= ?:Lexeme:Literal:Natural:Value (ConvertHexadecimalTokenStringToNatural (. format) ? 1 0))
    (= ?:Lexeme:Literal:Natural:Format (LiteralFormat:MakeCompactNaturalLiteralFormat format))
    );;
 )local
 (GotoOperandField ?)
  >>

#token NUMBER [NATURAL] "\% <binary_digit>+"
  << (local [format LiteralFormat:NaturalLiteralFormat]
    (;; (= ?:Lexeme:Literal:Natural:Value (ConvertBinaryTokenStringToNatural (. format) ? 1 0))
    (= ?:Lexeme:Literal:Natural:Format (LiteralFormat:MakeCompactNaturalLiteralFormat format))
    );;
 )local
 (GotoOperandField ?)
  >>

#token CHARACTER [CHARACTER] "<squoted_character>"
  <<  (= ?:Lexeme:Literal:Character:Value (TokenStringCharacter ? 2))
  (= ?:Lexeme:Literal:Character:Format (LiteralFormat:MakeCompactCharacterLiteralFormat 0 0)) ; nothing special about character
  (GotoOperandField ?)
  >>


%%OperandField

#skip "<hblanks>"
  << (GotoEOLComment ?) >>
#ifnotoken
  << (GotoEOLComment ?) >>

-- Tokens signalling switch to index register modes
#token ','   "\,"
   <<(GotoRegisterField ?)>>
#token '['   "\["
   <<(GotoRegisterField ?)>>

-- Operators for arithmetic syntax
#token '!!'  "\!\!"
#token '!'   "\!"
#token '##'  "\#\#"
#token '#'   "\#"
#token '&'   "\&"
#token '('   "\("
#token ')'   "\)"
#token '*'   "\*"
#token '+'   "\+"
#token '-'   "\-"
#token '/'   "\/"
#token '//'   "\/\/"
#token '<'   "\<"
#token '<'   "\<" 
#token '<<'  "\<\<"
#token '<='  "\<\="
#token '</'  "\<\/"
#token '='   "\="
#token '>'   "\>"
#token '>'   "\>"
#token '>='  "\>\="
#token '>>'  "\>\>"
#token '>/'  "\>\/"
#token '\\'  "\\"
#token '|'   "\|"
#token '||'  "\|\|"

#token NUMBER [NATURAL] "<decimal_number>"
  << (local [format LiteralFormat:NaturalLiteralFormat]
    (;; (= ?:Lexeme:Literal:Natural:Value (ConvertDecimalTokenStringToNatural (. format) ? 0 0))
    (= ?:Lexeme:Literal:Natural:Format (LiteralFormat:MakeCompactNaturalLiteralFormat format))
    );;
 )local
  >>

#token NUMBER [NATURAL] "\$ <hexadecimal_digit>+"
  << (local [format LiteralFormat:NaturalLiteralFormat]
    (;; (= ?:Lexeme:Literal:Natural:Value (ConvertHexadecimalTokenStringToNatural (. format) ? 1 0))
    (= ?:Lexeme:Literal:Natural:Format (LiteralFormat:MakeCompactNaturalLiteralFormat format))
    );;
 )local
  >>

#token NUMBER [NATURAL] "\% <binary_digit>+"
  << (local [format LiteralFormat:NaturalLiteralFormat]
    (;; (= ?:Lexeme:Literal:Natural:Value (ConvertBinaryTokenStringToNatural (. format) ? 1 0))
    (= ?:Lexeme:Literal:Natural:Format (LiteralFormat:MakeCompactNaturalLiteralFormat format))
    );;
 )local
  >>

-- Notice that an apparent register is accepted as a label in this mode
#token IDENTIFIER [STRING] "<identifier>"
  <<  (local (;; (= [TokenScan natural] 1) ; process all string characters
         (= [TokenLength natural] ?:TokenCharacterCount)=
         (= [TokenString (reference TokenBodyT)] (. ?:TokenCharacters))
         (= [Result (reference string)] (. ?:Lexeme:Literal:String:Value))
         [ThisCharacterCode natural]
         (define Ordinala #61)
         (define Ordinalf #66)
         (define OrdinalA #41)
         (define OrdinalF #46)
     );;
     (;; (= (@ Result) `') ; start with empty string
     (while (<= TokenScan TokenLength)
      (;;   (= ThisCharacterCode (coerce natural TokenString:TokenScan))  
        (+= TokenScan) ; bump past character
        (ifthen (>= ThisCharacterCode Ordinala)
           (-= ThisCharacterCode #20) ; fold to upper case
        )ifthen
        (= (@ Result) (append (@ Result) (coerce character ThisCharacterCode)))=

        );;
     )while
     );;
  )local
  (= ?:Lexeme:Literal:String:Format (LiteralFormat:MakeCompactStringLiteralFormat 0))  ; nothing interesting in string
  >>

%%Register -- operand field for TFR, ANDCC, ORCC, EXG opcodes

#skip "<hblanks>"
#ifnotoken << (GotoRegisterField ?) >>

%%RegisterField -- handles registers and indexing mode syntax
-- In this mode, names that look like registers are recognized as registers

#skip "<hblanks>"
  << (GotoEOLComment ?) >>
#ifnotoken
  << (GotoEOLComment ?) >>

#token '['   "\["
#token ']'   "\]"
#token '--'  "\-\-"
#token '++'  "\+\+"

#token 'A'      "[aA]"
#token 'B'      "[bB]"
#token 'CC'     "[cC][cC]"
#token 'DP'     "[dD][pP] | [dD][pP][rR]" -- DPR shouldnt be needed, but found one instance
#token 'D'      "[dD]"
#token 'Z'      "[zZ]"

-- Index register designations
#token 'X'      "[xX]"
#token 'Y'      "[yY]"
#token 'U'      "[uU]"
#token 'S'      "[sS]"
#token 'PCR'    "[pP][cC][rR]"
#token 'PC'     "[pP][cC]"

#token ','    "\,"

-- Operators for arithmetic syntax
#token '!!'  "\!\!"
#token '!'   "\!"
#token '##'  "\#\#"
#token '#'   "\#"
#token '&'   "\&"
#token '('   "\("
#token ')'   "\)"
#token '*'   "\*"
#token '+'   "\+"
#token '-'   "\-"
#token '/'   "\/"
#token '<'   "\<"
#token '<'   "\<" 
#token '<<'  "\<\<"
#token '<='  "\<\="
#token '<|'  "\<\|"
#token '='   "\="
#token '>'   "\>"
#token '>'   "\>"
#token '>='  "\>\="
#token '>>'  "\>\>"
#token '>|'  "\>\|"
#token '\\'  "\\"
#token '|'   "\|"
#token '||'  "\|\|"

#token NUMBER [NATURAL] "<decimal_number>"
  << (local [format LiteralFormat:NaturalLiteralFormat]
    (;; (= ?:Lexeme:Literal:Natural:Value (ConvertDecimalTokenStringToNatural (. format) ? 0 0))
    (= ?:Lexeme:Literal:Natural:Format (LiteralFormat:MakeCompactNaturalLiteralFormat format))
    );;
 )local
  >>

... [snip]

%% -- end M6809.lex

**************** PARSER **************

-- M6809.ATG: Motorola 6809 assembly code parser
-- (C) Copyright 1989;1999-2002 Ira D. Baxter; All Rights Reserved

m6809 = sourcelines ;

sourcelines = ;
sourcelines = sourcelines sourceline EOL ;
  <<PrettyPrinter>>: { V(CV(sourcelines[1]),H(sourceline,A<eol>(EOL))); }

-- leading opcode field symbol should be treated as keyword.

sourceline = ;
sourceline = labels ;
sourceline = optional_labels 'EQU' expression ;
  <<PrettyPrinter>>: { H(optional_labels,A<opcode>('EQU'),A<operand>(expression)); }
sourceline = LABEL 'SET' expression ;
  <<PrettyPrinter>>: { H(A<firstlabel>(LABEL),A<opcode>('SET'),A<operand>(expression)); }
sourceline = optional_label instruction ;
  <<PrettyPrinter>>: { H(optional_label,instruction); }
sourceline = optional_label optlabelleddirective ;
  <<PrettyPrinter>>: { H(optional_label,optlabelleddirective); }
sourceline = optional_label implicitdatadirective ;
  <<PrettyPrinter>>: { H(optional_label,implicitdatadirective); }
sourceline = unlabelleddirective ;
sourceline = '?ERROR' ;
  <<PrettyPrinter>>: { A<opcode>('?ERROR'); }

optional_label = labels ;
optional_label = LABEL ':' ;
  <<PrettyPrinter>>: { H(A<firstlabel>(LABEL),':'); }
optional_label = ;

optional_labels = ;
optional_labels = labels ;
labels = LABEL ;
  <<PrettyPrinter>>: { A<firstlabel>(LABEL); }
labels = labels ',' LABEL ;
  <<PrettyPrinter>>: { H(labels[1],',',A<otherlabels>(LABEL)); }

unlabelleddirective = 'END' ;
  <<PrettyPrinter>>: { A<opcode>('END'); }
unlabelleddirective = 'END' expression ;
  <<PrettyPrinter>>: { H(A<opcode>('END'),A<operand>(expression)); }
unlabelleddirective = 'IF' expression EOL conditional ;
  <<PrettyPrinter>>: { V(H(A<opcode>('IF'),H(A<operand>(expression),A<eol>(EOL))),CV(conditional)); }
unlabelleddirective = 'IFDEF' IDENTIFIER EOL conditional ;
  <<PrettyPrinter>>: { V(H(A<opcode>('IFDEF'),H(A<operand>(IDENTIFIER),A<eol>(EOL))),CV(conditional)); }
unlabelleddirective = 'IFUND' IDENTIFIER EOL conditional ;
  <<PrettyPrinter>>: { V(H(A<opcode>('IFUND'),H(A<operand>(IDENTIFIER),A<eol>(EOL))),CV(conditional)); }
unlabelleddirective = 'INCLUDE' FILENAME ;
  <<PrettyPrinter>>: { H(A<opcode>('INCLUDE'),A<operand>(FILENAME)); }
unlabelleddirective = 'LIST' expression ;
  <<PrettyPrinter>>: { H(A<opcode>('LIST'),A<operand>(expression)); }
unlabelleddirective = 'NAME' IDENTIFIER ;
  <<PrettyPrinter>>: { H(A<opcode>('NAME'),A<operand>(IDENTIFIER)); }
unlabelleddirective = 'ORG' expression ;
  <<PrettyPrinter>>: { H(A<opcode>('ORG'),A<operand>(expression)); }
unlabelleddirective = 'PAGE' ;
  <<PrettyPrinter>>: { A<opcode>('PAGE'); }
unlabelleddirective = 'PAGE' HEADING ;
  <<PrettyPrinter>>: { H(A<opcode>('PAGE'),A<operand>(HEADING)); }
unlabelleddirective = 'PCA' expression ;
  <<PrettyPrinter>>: { H(A<opcode>('PCA'),A<operand>(expression)); }
unlabelleddirective = 'PCC' expression ;
  <<PrettyPrinter>>: { H(A<opcode>('PCC'),A<operand>(expression)); }
unlabelleddirective = 'PSR' expression ;
  <<PrettyPrinter>>: { H(A<opcode>('PSR'),A<operand>(expression)); }
unlabelleddirective = 'TABS' numberlist ;
  <<PrettyPrinter>>: { H(A<opcode>('TABS'),A<operand>(numberlist)); }
unlabelleddirective = 'TITLE' HEADING ;
  <<PrettyPrinter>>: { H(A<opcode>('TITLE'),A<operand>(HEADING)); }
unlabelleddirective = 'WITH' settings ;
  <<PrettyPrinter>>: { H(A<opcode>('WITH'),A<operand>(settings)); }

settings = setting ;
settings = settings ',' setting ;
  <<PrettyPrinter>>: { H*; }
setting = 'WI' '=' NUMBER ;
  <<PrettyPrinter>>: { H*; }
setting = 'DE' '=' NUMBER ;
  <<PrettyPrinter>>: { H*; }
setting = 'M6800' ;
setting = 'M6801' ;
setting = 'M6809' ;
setting = 'M6811' ;

-- collects lines of conditional code into blocks
conditional = 'ELSEIF' expression EOL conditional ;
  <<PrettyPrinter>>: { V(H(A<opcode>('ELSEIF'),H(A<operand>(expression),A<eol>(EOL))),CV(conditional[1])); }
conditional = 'ELSE' EOL else ;
  <<PrettyPrinter>>: { V(H(A<opcode>('ELSE'),A<eol>(EOL)),CV(else)); }
conditional = 'FIN' ;
  <<PrettyPrinter>>: { A<opcode>('FIN'); }
conditional = sourceline EOL conditional ;
  <<PrettyPrinter>>: { V(H(sourceline,A<eol>(EOL)),CV(conditional[1])); }

else = 'FIN' ;
  <<PrettyPrinter>>: { A<opcode>('FIN'); }
else = sourceline EOL else ;
  <<PrettyPrinter>>: { V(H(sourceline,A<eol>(EOL)),CV(else[1])); }

-- keyword-less directive, generates data tables

implicitdatadirective = implicitdatadirective ',' implicitdataitem ;
  <<PrettyPrinter>>: { H*; }
implicitdatadirective = implicitdataitem ;

implicitdataitem = '#' expression ;
  <<PrettyPrinter>>: { A<operand>(H('#',expression)); }
implicitdataitem = '+' expression ;
  <<PrettyPrinter>>: { A<operand>(H('+',expression)); }
implicitdataitem = '-' expression ;
  <<PrettyPrinter>>: { A<operand>(H('-',expression)); }
implicitdataitem = expression ;
  <<PrettyPrinter>>: { A<operand>(expression); }
implicitdataitem = STRING ;
  <<PrettyPrinter>>: { A<operand>(STRING); }

-- instructions valid for m680C (see Software Dynamics ASM manual)
instruction = 'ABA' ;
  <<PrettyPrinter>>: { A<opcode>('ABA'); }
instruction = 'ABX' ;
  <<PrettyPrinter>>: { A<opcode>('ABX'); }

instruction = 'ADC' 'A' operandfetch ;
  <<PrettyPrinter>>: { H(A<opcode>(H('ADC','A')),A<operand>(operandfetch)); }
instruction = 'ADC' 'B' operandfetch ;
  <<PrettyPrinter>>: { H(A<opcode>(H('ADC','B')),A<operand>(operandfetch)); }
instruction = 'ADCA' operandfetch ;
  <<PrettyPrinter>>: { H(A<opcode>('ADCA'),A<operand>(operandfetch)); }
instruction = 'ADCB' operandfetch ;
  <<PrettyPrinter>>: { H(A<opcode>('ADCB'),A<operand>(operandfetch)); }
instruction = 'ADCD' operandfetch ;
  <<PrettyPrinter>>: { H(A<opcode>('ADCD'),A<operand>(operandfetch)); }

instruction = 'ADD' 'A' operandfetch ;
  <<PrettyPrinter>>: { H(A<opcode>(H('ADD','A')),A<operand>(operandfetch)); }
instruction = 'ADD' 'B' operandfetch ;
  <<PrettyPrinter>>: { H(A<opcode>(H('ADD','B')),A<operand>(operandfetch)); }
instruction = 'ADDA' operandfetch ;
  <<PrettyPrinter>>: { H(A<opcode>('ADDA'),A<operand>(operandfetch)); }

[..snip...]

-- condition code mask for ANDCC and ORCC
conditionmask = '#' expression ;
  <<PrettyPrinter>>: { H*; }
conditionmask = expression ;

target = expression ;

operandfetch = '#' expression ; --immediate
  <<PrettyPrinter>>: { H*; }

operandfetch = memoryreference ;

operandstore = memoryreference ;

memoryreference = '[' indexedreference ']' ;
  <<PrettyPrinter>>: { H*; }
memoryreference = indexedreference ;

indexedreference = offset ;
indexedreference = offset ',' indexregister ;
  <<PrettyPrinter>>: { H*; }
indexedreference = ',' indexregister ;
  <<PrettyPrinter>>: { H*; }
indexedreference = ',' '--' indexregister ;
  <<PrettyPrinter>>: { H*; }
indexedreference = ',' '-' indexregister ;
  <<PrettyPrinter>>: { H*; }
indexedreference = ',' indexregister '++' ;
  <<PrettyPrinter>>: { H*; }
indexedreference = ',' indexregister '+' ;
  <<PrettyPrinter>>: { H*; }

offset = '>' expression ; -- page zero ref
  <<PrettyPrinter>>: { H*; }
offset = '<' expression ; -- long reference
  <<PrettyPrinter>>: { H*; }
offset = expression ;
offset = 'A' ;
offset = 'B' ;
offset = 'D' ;

registerlist = registername ;
registerlist = registerlist ',' registername ;
  <<PrettyPrinter>>: { H*; }

registername = 'A' ;
registername = 'B' ;
registername = 'CC' ;
registername = 'DP' ;
registername = 'D' ;
registername = 'Z' ;
registername = indexregister ;

indexregister = 'X' ;
indexregister = 'Y' ;
indexregister = 'U' ;  -- not legal on M6811
indexregister = 'S' ;
indexregister = 'PCR' ;
indexregister = 'PC' ;

expression = sum '=' sum ;
  <<PrettyPrinter>>: { H*; }
expression = sum '<<' sum ;
  <<PrettyPrinter>>: { H*; }
expression = sum '</' sum ;
  <<PrettyPrinter>>: { H*; }
expression = sum '<=' sum ;
  <<PrettyPrinter>>: { H*; }
expression = sum '<' sum ;
  <<PrettyPrinter>>: { H*; }
expression = sum '>>' sum ;
  <<PrettyPrinter>>: { H*; }
expression = sum '>/' sum ;
  <<PrettyPrinter>>: { H*; }
expression = sum '>=' sum ;
  <<PrettyPrinter>>: { H*; }
expression = sum '>' sum ;
  <<PrettyPrinter>>: { H*; }
expression = sum '#' sum ;
  <<PrettyPrinter>>: { H*; }
expression = sum ;

sum = product ;
sum = sum '+' product ;
  <<PrettyPrinter>>: { H*; }
sum = sum '-' product ;
  <<PrettyPrinter>>: { H*; }
sum = sum '!' product ;
  <<PrettyPrinter>>: { H*; }
sum = sum '!!' product ;
  <<PrettyPrinter>>: { H*; }

product = term '*' product ;
  <<PrettyPrinter>>: { H*; }
product = term '||' product ; -- wrong?
  <<PrettyPrinter>>: { H*; }
product = term '/' product ;
  <<PrettyPrinter>>: { H*; }
product = term '//' product ;
  <<PrettyPrinter>>: { H*; }
product = term '&' product ;
  <<PrettyPrinter>>: { H*; }
product = term '##' product ;
  <<PrettyPrinter>>: { H*; }
product = term ;

term = '+' term ;
  <<PrettyPrinter>>: { H*; }
term = '-' term ; 
  <<PrettyPrinter>>: { H*; }
term = '\\' term ; -- complement
  <<PrettyPrinter>>: { H*; }
term = '&' term ; -- not

term = IDENTIFIER ;
term = NUMBER ;
term = CHARACTER ;
term = '*' ;
term = '(' expression ')' ;
  <<PrettyPrinter>>: { H*; }

numberlist = NUMBER ;
numberlist = numberlist ',' NUMBER ;
  <<PrettyPrinter>>: { H*; }
空宴 2024-08-09 10:04:28

BNF 更广泛地用于结构化、嵌套语言,如 Pascal、C++,或者任何源自 Algol 家族(包括 C# 等现代语言)的语言。如果我要实现汇编程序,我可能会使用一些简单的正则表达式来对操作码和操作数进行模式匹配。我已经有一段时间没有使用 Z80 汇编语言了,但您可能会使用类似的内容:

/\s*(\w{2,3})\s+((\w+)(,\w+)?)?/

这将匹配由两个或三个字母的操作码后跟一个或两个以逗号分隔的操作数组成的任何行。提取这样的汇编程序行后,您将查看操作码并生成指令的正确字节,包括操作数的值(如果适用)。

我上面概述的使用正则表达式的解析器类型称为“临时”解析器,这本质上意味着您在某种块的基础上分割和检查输入(在汇编语言的情况下,通过文本行)。

BNF is more generally used for structured, nested languages like Pascal, C++, or really anything derived from the Algol family (which includes modern languages like C#). If I were implementing an assembler, I might use some simple regular expressions to pattern-match the opcode and operands. It's been a while since I've used Z80 assembly language, but you might use something like:

/\s*(\w{2,3})\s+((\w+)(,\w+)?)?/

This would match any line which consists of a two- or three-letter opcode followed by one or two operands separated by a comma. After extracting an assembler line like this, you would look at the opcode and generate the correct bytes for the instruction, including the values of the operands if applicable.

The type of parser I've outlined above using regular expressions would be called an "ad hoc" parser, which essentially means you split and examine the input on some kind of block basis (in the case of assembly language, by text line).

是伱的 2024-08-09 10:04:28

我觉得你没必要想太多当您可以将整个事物(模数大小写和空格)直接字符串匹配到一个操作码时,制作一个将“LD A,A”分解为加载操作、目标和源寄存器的解析器是没有意义的。

操作码并不多,而且它们的排列方式也没有让您从解析和理解汇编器(IMO)中真正获得很多好处。显然,您需要一个用于字节/地址/索引参数的解析器,但除此之外,我只需进行一对一的查找。

I don't think you need overthink it. There's no point making a parser that takes apart “LD A,A” into a load operation, destination and source register, when you can just string match the whole thing (modulo case and whitespace) into one opcode directly.

There aren't that many opcodes, and they aren't arranged in such a way that you really get much benefit from parsing and understanding the assembler IMO. Obviously you'd need a parser for the byte/address/indexing arguments, but other than that I'd just have a one-to-one lookup.

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文