确认我了解矩阵行列式

发布于 2024-08-01 15:35:18 字数 2006 浏览 4 评论 0原文

基本上,在过去的几周里,我一直在尝试加深对矩阵数学的理解,在阅读(并重新阅读)许多数学沉重的文章和文档后,我认为我已经了解了有充分的了解,但我只是想确定一下!

我最终得到的定义是:

/*
    Minor
    -----
    -A determinant of a sub matrix
    -The sub matrix used to calculate a minor can be obtained by removing more then one row/column from the original matrix
    -First minors are minors of a sub matrix where only the row and column of a single element have been removed

    Cofactor
    --------
    -The (signed) minor of a single element from a matrix
     ie. the minor of element 2,3 is the determinant of the submatrix, of the matrix, defined by removing row 2 and column 3

    Determinant
    -----------
    -1. Choose any single row or column from a Matrix.
     2. For each element in the row/column, multiply the value of the element against the First Minor of that element.
     3. This result is then multiplied by (-1 raised to the power of the elements row index + its column index) which will give the result of step 2 a sign.
     4. You then simply sum all these results to get the determinant (a real number) for the Matrix.
*/

请让我知道我的理解中有任何漏洞吗?

来源
http://en.wikipedia.org /Cofactor_(线性_代数) & /Minor_(线性代数) & /行列式 http://easyweb.easynet.co.uk/~mrmeanie/matrix/矩阵.htm
http://www.geometrictools.com/Documentation/LaplaceExpansionTheorem.pdf(最有帮助)
计算机图形学几何工具(这可能有缺页,我有完整副本)

Basically I have been trying to forge an understanding of matrix maths over the last few weeks and after reading (and re-reading) many maths heavy articles and documentation I think I have an adequate understanding, but I just wanted to make sure!

The definitions i have ended up with are:

/*
    Minor
    -----
    -A determinant of a sub matrix
    -The sub matrix used to calculate a minor can be obtained by removing more then one row/column from the original matrix
    -First minors are minors of a sub matrix where only the row and column of a single element have been removed

    Cofactor
    --------
    -The (signed) minor of a single element from a matrix
     ie. the minor of element 2,3 is the determinant of the submatrix, of the matrix, defined by removing row 2 and column 3

    Determinant
    -----------
    -1. Choose any single row or column from a Matrix.
     2. For each element in the row/column, multiply the value of the element against the First Minor of that element.
     3. This result is then multiplied by (-1 raised to the power of the elements row index + its column index) which will give the result of step 2 a sign.
     4. You then simply sum all these results to get the determinant (a real number) for the Matrix.
*/

Please let me know of any holes in my understanding?

Sources
http://en.wikipedia.org /Cofactor_(linear_algebra) & /Minor_(linear_algebra) & /Determinant
http://easyweb.easynet.co.uk/~mrmeanie/matrix/matrices.htm
http://www.geometrictools.com/Documentation/LaplaceExpansionTheorem.pdf (the most helpful)
Geometric tools for computer graphics (this may have missing pages, i have the full copy)

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(1

仙女山的月亮 2024-08-08 15:35:18

听起来您似乎了解决定因素 - 现在就开始编写代码吧! 尝试使用克莱默法则编写一个求解器,用于 3 个或更多变量的联立线性方程。

既然您标记了这个问题 3dgraphics,矩阵和向量乘法可能是下一步探索的好领域。 它们在 3D 图形编程中随处可见。

Sounds like you understand determinants -- now go forth and write code! Try writing a solver for simultaneous linear equations in 3 or more variables, using Cramer's Rule.

Since you tagged this question 3dgraphics, matrix and vector multiplication might be a good area to explore next. They come up everywhere in 3d graphics programming.

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文