一个有趣的数学难题

发布于 2024-07-30 20:19:51 字数 595 浏览 4 评论 0原文

虽然它与编程不太相关,但我认为这可能会有一些帮助:

A zeroless pandigital number of base 10 is a number with all the 
distinct digits 1,2,3,4,5,6,7,8,9. 
For example, the first zeroless pandigital number of base 10 is 123456789.
Find a zeroless pandigital number of base 10 such that the numbers up to the nth 
digit is divisible by n i.e. the number formed by 1st, 2nd and 3rd digit 
is divisible by 3, the number formed by 1 to 6 digits is divisible by 6 
and so on.

我一开始就假设没有。 为“abcdefghi”并声明 a 可以是 “1-9”之间的任何数字 b 只能是偶数,e 肯定是 5 等等。

但我无法找到如何从这里出发。

任何帮助/或更好的方法将不胜感激

Although it is not very programming related but I think SO could be of some assistance:

A zeroless pandigital number of base 10 is a number with all the 
distinct digits 1,2,3,4,5,6,7,8,9. 
For example, the first zeroless pandigital number of base 10 is 123456789.
Find a zeroless pandigital number of base 10 such that the numbers up to the nth 
digit is divisible by n i.e. the number formed by 1st, 2nd and 3rd digit 
is divisible by 3, the number formed by 1 to 6 digits is divisible by 6 
and so on.

I started with thinking as assuming the no. to be "abcdefghi" and stating that a can be
any number between "1-9" b can be only the even ones, e is surely 5 and so on.

But I am not able to find how to go from here.

Any help/or better method will be appreciated

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(3

为人所爱 2024-08-06 20:19:52

许多方法可以减少可能性的数量,或者至少减少计算所花费的时间。

b 必须是偶数。

(a + b + c) 必须能被 3 整除。d

必须是偶数,而且 (2c+d) 也必须能被 4 整除。e

必须是 5 或零,并且由于 0 不是泛数字中的一个选项,因此不包括 0,则 e 必须为 5。f

必须为偶数。 而且,(a + b + c + d + e + f) 必须能被 3 整除。因为我们已经知道 (a + b + c) 能被 3 整除,所以这告诉我们 (d + e + f) ) 必须能被 3 整除。

(a -2b -3c - d + 2e + 3f + g) 必须能被 7 整除。

h 必须是偶数,而且为了能被 8 整除,我们只需要检查 (4f+2g+ h) 是可整除的。

由于 b、d、f 和 h 必须均为偶数,因此 a、c、e、g、i 必须仅为奇数。

最后,所有不包含 0 的 9 位泛数字都可以被 9 整除。因此根本不需要对此进行任何测试!

Many ways to reduce the number of possibilities, or at least reduce the calculations expended.

b must be even.

(a + b + c) must be divisible by 3.

d must be even, but also (2c+d) must be divisible by 4.

e must be 5 or zero, and since 0 is not an option in a pandigital number that does not include 0, then e must be 5.

f must be even. But also, (a + b + c + d + e + f) must be divisible by 3. Since we already know that (a + b + c) is divisible by 3, then this tells us that (d + e + f) must be divisible by 3.

(a -2b -3c - d + 2e + 3f + g) must be divisible by 7.

h must be even, but also for divisibility by 8, we need only check that (4f+2g+h) is so divisible.

Since b, d, f, and h must all be even digits, then a,c,e,g,i must be only odd digits.

Finally, ALL 9 digit pandigital numbers that do not include 0 are divisible by 9. So no tests need be done for that at all!

往事风中埋 2024-08-06 20:19:52

两位数 cd(奇-偶)应能被 4 整除,三位数fgh(偶-奇-偶)应能被 8 整除。

因此,考虑到可能性,d必须是2或6,而h必须是4、2或6

这可能有助于减少可能性的数量。

The two-digit number cd (odd-even) should be divisible by 4 and the three digit number fgh(even-odd-even) should be divisible by 8.

Thus, considering the possibilities, d have to be 2 or 6, and h have to be 4, 2 or 6

This may help to reduce the number of possibilities.

做个ˇ局外人 2024-08-06 20:19:51

为什么所有答案都在评论里? 我希望我发布答案不会违反某种我不知道的礼仪。

(b, d, f, h) 必须是按某种顺序排列的偶数 (2, 4, 6, 8)e必须是 5,因此 (a, c, g, i) 必须是数字 (1, 3, 7, 9)一些订单。 一旦您进行了这些观察,就只有 4!*4!=576 种可能性,因此请全部检查。

Why are all the answers in the comments? I hope I'm not breaking some sort of etiquette I don't know about by posting an answer.

(b, d, f, h) have to be the even numbers (2, 4, 6, 8) in some order, e must be 5, so (a, c, g, i) have to be the numbers (1, 3, 7, 9) in some order. Once you've made these observations, there are only 4!*4!=576 possibilities, so check them all.

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文