如何在 R 中的因子水平内进行中值分割?

发布于 2024-07-30 06:20:51 字数 1538 浏览 11 评论 0原文

在这里,我创建了一个新列来指示 myData 是否高于或低于其中值,

### MedianSplits based on Whole Data
#create some test data
myDataFrame=data.frame(myData=runif(15),myFactor=rep(c("A","B","C"),5)) 

#create column showing median split
myBreaks= quantile(myDataFrame$myData,c(0,.5,1))
myDataFrame$MedianSplitWholeData = cut(
    myDataFrame$myData,
    breaks=myBreaks, 
    include.lowest=TRUE,
    labels=c("Below","Above"))

#Check if it's correct
myDataFrame$AboveWholeMedian = myDataFrame$myData > median(myDataFrame$myData)
myDataFrame

效果很好。 现在我想做同样的事情,但计算 myFactor 每个级别内的中位数分割。

我想出了这个:

#Median splits within factor levels
byOutput=by(myDataFrame$myData,myDataFrame$myFactor, function (x) {
     myBreaks= quantile(x,c(0,.5,1))
     MedianSplitByGroup=cut(x,
       breaks=myBreaks, 
       include.lowest=TRUE,
       labels=c("Below","Above"))
     MedianSplitByGroup
     })

byOutput 包含我想要的内容。 它对因素 A、B 和 C 的每个元素进行了正确分类。 不过,我想创建一个新列 myDataFrame$FactorLevelMedianSplit,它显示新计算的中值分割。

如何将“by”命令的输出转换为有用的数据框列?

我认为也许“by”命令不是类似 R 的方式来执行此操作...

更新

以 Thierry 的示例为例,说明如何巧妙地使用 Factor() ,并在发现中的“ave”函数后Spector 的书,我找到了这个解决方案,不需要额外的包。

myDataFrame$MediansByFactor=ave(
    myDataFrame$myData,
    myDataFrame$myFactor,
    FUN=median)

myDataFrame$FactorLevelMedianSplit = factor(
    myDataFrame$myData>myDataFrame$MediansByFactor, 
    levels = c(TRUE, FALSE), 
    labels = c("Above", "Below"))

Here I make a new column to indicate whether myData is above or below its median

### MedianSplits based on Whole Data
#create some test data
myDataFrame=data.frame(myData=runif(15),myFactor=rep(c("A","B","C"),5)) 

#create column showing median split
myBreaks= quantile(myDataFrame$myData,c(0,.5,1))
myDataFrame$MedianSplitWholeData = cut(
    myDataFrame$myData,
    breaks=myBreaks, 
    include.lowest=TRUE,
    labels=c("Below","Above"))

#Check if it's correct
myDataFrame$AboveWholeMedian = myDataFrame$myData > median(myDataFrame$myData)
myDataFrame

Works fine. Now I want to do the same thing, but compute the median splits within each level of myFactor.

I've come up with this:

#Median splits within factor levels
byOutput=by(myDataFrame$myData,myDataFrame$myFactor, function (x) {
     myBreaks= quantile(x,c(0,.5,1))
     MedianSplitByGroup=cut(x,
       breaks=myBreaks, 
       include.lowest=TRUE,
       labels=c("Below","Above"))
     MedianSplitByGroup
     })

byOutput contains what I want. It categorizes each element of factors A, B, and C correctly. However I'd like to create a new column, myDataFrame$FactorLevelMedianSplit, that shows the newly-computed median split.

How do you convert the output of the "by" command into a useful data-frame column?

I think perhaps the "by" command is not R-like way to do this ...

Update:

With Thierry's example of how to use factor() cleverly, and upon discovering the "ave" function in Spector's book, I've found this solution, which requires no additional packages.

myDataFrame$MediansByFactor=ave(
    myDataFrame$myData,
    myDataFrame$myFactor,
    FUN=median)

myDataFrame$FactorLevelMedianSplit = factor(
    myDataFrame$myData>myDataFrame$MediansByFactor, 
    levels = c(TRUE, FALSE), 
    labels = c("Above", "Below"))

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(3

作妖 2024-08-06 06:20:51

这是使用 plyr 包的解决方案。

myDataFrame <- data.frame(myData=runif(15),myFactor=rep(c("A","B","C"),5))
library(plyr)
ddply(myDataFrame, "myFactor", function(x){
    x$Median <- median(x$myData)
    x$FactorLevelMedianSplit <- factor(x$myData <= x$Median, levels = c(TRUE, FALSE), labels = c("Below", "Above"))
    x
})

Here is a solution using the plyr package.

myDataFrame <- data.frame(myData=runif(15),myFactor=rep(c("A","B","C"),5))
library(plyr)
ddply(myDataFrame, "myFactor", function(x){
    x$Median <- median(x$myData)
    x$FactorLevelMedianSplit <- factor(x$myData <= x$Median, levels = c(TRUE, FALSE), labels = c("Below", "Above"))
    x
})
静水深流 2024-08-06 06:20:51

这是一种 hack 式的方法。 Hadley 可能会带来更优雅的东西:

首先,我们简单地连接 by 输出:

 R> do.call(c,byOutput)
A1 A2 A3 A4 A5 B1 B2 B3 B4 B5 C1 C2 C3 C4 C5 
 1  2  2  1  1  1  1  2  1  2  1  2  1  1  2 

重要的是我们在这里得到因子级别 1 和 2,我们可以用它们来重新索引一个新因子这些级别:

R> c("Below","Above")[do.call(c,byOutput)]
 [1] "Below" "Above" "Above" "Below" "Below" "Below" "Below" "Above" 
 [8] "Below" "Above" "Below" "Above" "Below" "Below" "Above"
R> as.factor(c("Below","Above")[do.call(c,byOutput)])
[1] Below Above Above Below Below Below Below Above Below Above 
[11] Below Above Below Below Above
Levels: Above Below

然后我们可以将其分配到您想要修改的 data.frame 中:

R> myDataFrame$FactorLevelMedianSplit <- 
      as.factor(c("Below","Above")[do.call(c,byOutput)])

更新:没关系,我们需要重新索引 myDataFrame 以进行 AA 排序.. .AB ... BC ... C 在我们添加新列之前也是如此。 留作练习...

Here is a hack-ish way. Hadley may come with something more elegant:

To start, we simple concatenate the by output:

 R> do.call(c,byOutput)
A1 A2 A3 A4 A5 B1 B2 B3 B4 B5 C1 C2 C3 C4 C5 
 1  2  2  1  1  1  1  2  1  2  1  2  1  1  2 

and what matters that we get the factor levels 1 and 2 here which we can use to re-index a new factor with those levels:

R> c("Below","Above")[do.call(c,byOutput)]
 [1] "Below" "Above" "Above" "Below" "Below" "Below" "Below" "Above" 
 [8] "Below" "Above" "Below" "Above" "Below" "Below" "Above"
R> as.factor(c("Below","Above")[do.call(c,byOutput)])
[1] Below Above Above Below Below Below Below Above Below Above 
[11] Below Above Below Below Above
Levels: Above Below

which we can then assign into the data.frame you wanted to modify:

R> myDataFrame$FactorLevelMedianSplit <- 
      as.factor(c("Below","Above")[do.call(c,byOutput)])

Update: Never mind, we'd need to reindex myDataFrame to be sorted A A ... A B ... B C ... C as well before we add the new column. Left as an exercise...

无悔心 2024-08-06 06:20:51

你不是在寻找这样的东西,是吗?

Course$grade2 <- ifelse(Course$grade >= median(Course$grade), 1, 0)

You weren't looking for something like this, were you?

Course$grade2 <- ifelse(Course$grade >= median(Course$grade), 1, 0)
~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文