3x3 Sobel 算子和梯度特征

发布于 2024-07-29 19:24:39 字数 549 浏览 8 评论 0原文

读一篇论文时,我很难理解所描述的算法:

给定手写样本的黑白数字图像,剪出单个字符进行分析。 由于它可以是任意大小,因此算法需要考虑到这一点(如果更容易的话,我们可以假设大小为 2^nx 2^m)。

现在,描述指出,给定该图像,我们将其转换为 512 位特征(512 位哈希),如下所示:

  1. (192 位)通过将图像与 3x3 Sobel 算子进行卷积来计算图像的梯度。 每个边缘处的梯度方向被量化为 12 个方向。

  2. (192 位)结构特征生成器获取梯度图并在邻域中查找梯度值的某些组合。 (用于计算代表图像中的线和角的 8 个不同特征)

  3. (128 位)凹度生成器使用 8 点星形运算符来查找 4 个方向上的粗凹度、孔和大尺度笔划。

图像特征图使用 4x4 网格进行标准化。

我现在正在努力解决如何拍摄任意图像,将其分为 16 个部分,并使用 3x3 Sobel 运算符为每个部分提供 12 位。 (但是如果您对其他部分有一些见解,请随时发表评论:)

Reading a paper, I'm having difficulty understanding the algorithm described:

Given a black and white digital image of a handwriting sample, cut out a single character to analyze. Since this can be any size, the algorithm needs to take this into account (if it will be easier, we can assume the size is 2^n x 2^m).

Now, the description states given this image we will convert it to a 512-bit feature (a 512-bit hash) as follows:

  1. (192 bits) computes the gradient of the image by convolving it with a 3x3 Sobel operator. The direction of the gradient at every edge is quantized to 12 directions.

  2. (192 bits) The structural feature generator takes the gradient map and looks in a neighborhood for certain combinations of gradient values. (used to compute 8 distinct features that represent lines and corners in the image)

  3. (128 bits) Concavity generator uses an 8-point star operator to find coarse concavities in 4 directions, holes, and lagrge-scale strokes.

The image feature maps are normalized with a 4x4 grid.

I'm for now struggling with how to take an arbitrary image, split into 16 sections, and using a 3x3 Sobel operator to come up with 12 bits for each section. (But if you have some insight into the other parts, feel free to comment :)

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(2

尛丟丟 2024-08-05 19:24:39

我正在努力研究 Srihari 等人的同一篇论文。 (2002)我的博士学位。 论文。 我想说这篇文章不是很具体,但作者参考了技术报告(CEDAR-TR-01-1)以获取更多详细信息。 该报告似乎无法在互联网上访问,因此我的建议是通过电子邮件联系作者并索取该报告。 如果有不清楚的地方,您也可以要求澄清。

I'm struggling with the same paper by Srihari et al. (2002) for my Ph.D. thesis. I would say this text is not very specific, but the authors refer to a technical report (CEDAR-TR-01-1) for more details. This report seems not to be accessible on internet, so my suggestion is to contact the authors by e-mail and ask for this report. If something is not clear, you could ask for clarification as well.

℡寂寞咖啡 2024-08-05 19:24:39

我发现这个问题很古老,但也许它可以帮助某人 - 您应用索贝尔算子对图像进行水平和垂直边缘检测。 根据结果​​,您可以计算图像每个点的图像方向向量。 在您的情况下,您需要将这些向量映射到 12 个方向。 然后,在您的情况下,您将图像分为 4x4 子图像(16 个部分)并计算每个部分中每个方向的强度。 这给你 12*16=192 个特征。 如果需要,我可以提供更详细的解释。

I see the question is very old but maybe it can help someone - you apply sobel operators for horizontal and vertical edge detection on an image. From the result you can calculate image direction vectors for every point of an image. In your case you need to map these vectors to 12 directions. Then, in your case, you divide the image into 4x4 subimages (16 sections) and calculate intensity of each direction in each section. This gives you 12*16=192 features. I can give more detailed explanation if needed.

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文