Haskell 和二次方程

发布于 2024-07-29 10:54:55 字数 2043 浏览 4 评论 0原文

我必须编写一个程序来求解二次方程,返回一个复数结果。

到目前为止,我已经定义了一个复数,声明它是 num 的一部分,因此可以进行 +、- 和 * - ing。

我还定义了二次方程的数据类型,但我现在坚持二次方程的实际求解。 我的数学很差,所以任何帮助将不胜感激...

data Complex = C {
re :: Float,
im :: Float
} deriving Eq

-- Display complex numbers in the normal way

instance Show Complex where
    show (C r i)
        | i == 0            = show r
        | r == 0            = show i++"i"
        | r < 0 && i < 0    = show r ++ " - "++ show (C 0 (i*(-1)))
        | r < 0 && i > 0    = show r ++ " + "++ show (C 0 i)
        | r > 0 && i < 0    = show r ++ " - "++ show (C 0 (i*(-1)))
        | r > 0 && i > 0    = show r ++ " + "++ show (C 0 i)


-- Define algebraic operations on complex numbers
instance Num Complex where
    fromInteger n       = C (fromInteger n) 0 -- tech reasons
    (C a b) + (C x y)   = C (a+x) (b+y)
    (C a b) * (C x y)   = C (a*x - b*y) (b*x + b*y)
    negate (C a b)      = C (-a) (-b)

instance Fractional Complex where
    fromRational r      = C (fromRational r) 0 -- tech reasons
    recip (C a b)       = C (a/((a^2)+(b^2))) (b/((a^2)+(b^2)))


root :: Complex -> Complex
root (C x y)
    | y == 0 && x == 0  = C 0 0
    | y == 0 && x > 0   = C (sqrt ( ( x + sqrt ( (x^2) + 0 ) ) / 2 ) )  0
    | otherwise         = C (sqrt ( ( x + sqrt ( (x^2) + (y^2) ) ) / 2 ) ) ((y/(2*(sqrt ( ( x + sqrt ( (x^2) + (y^2) ) ) / 2 ) ) ) ) )


-- quadratic polynomial : a.x^2 + b.x + c
data Quad = Q {
    aCoeff, bCoeff, cCoeff :: Complex
    } deriving Eq


instance Show Quad where
    show (Q a b c) = show a ++ "x^2 + " ++ show b ++ "x + " ++ show c

solve :: Quad -> (Complex, Complex)
solve (Q a b c) = STUCK!

编辑:我似乎错过了使用我自己的复数数据类型的全部要点是了解自定义数据类型。 我很清楚我可以使用complex.data。 到目前为止,使用我的解决方案可以提供的任何帮助将不胜感激。\

编辑2:看来我最初的问题措辞很糟糕。 我知道二次公式会将两个(或仅一个)根返回给我。 我遇到麻烦的地方是使用上面的代码将这些根作为(复杂,复杂)元组返回。

我很清楚我可以使用内置的二次函数,如下所示,但这不是练习。 该练习以及创建自己的复数数据类型背后的想法是了解自定义数据类型。

I have to write a program to solve quadratics, returning a complex number result.

I've gotten so far, with defining a complex number, declaring it to be part of num, so +,- and * - ing can take place.

I've also defined a data type for a quadratic equation, but im now stuck with the actual solving of the quadratic. My math is quite poor, so any help would be greatly appreciated...

data Complex = C {
re :: Float,
im :: Float
} deriving Eq

-- Display complex numbers in the normal way

instance Show Complex where
    show (C r i)
        | i == 0            = show r
        | r == 0            = show i++"i"
        | r < 0 && i < 0    = show r ++ " - "++ show (C 0 (i*(-1)))
        | r < 0 && i > 0    = show r ++ " + "++ show (C 0 i)
        | r > 0 && i < 0    = show r ++ " - "++ show (C 0 (i*(-1)))
        | r > 0 && i > 0    = show r ++ " + "++ show (C 0 i)


-- Define algebraic operations on complex numbers
instance Num Complex where
    fromInteger n       = C (fromInteger n) 0 -- tech reasons
    (C a b) + (C x y)   = C (a+x) (b+y)
    (C a b) * (C x y)   = C (a*x - b*y) (b*x + b*y)
    negate (C a b)      = C (-a) (-b)

instance Fractional Complex where
    fromRational r      = C (fromRational r) 0 -- tech reasons
    recip (C a b)       = C (a/((a^2)+(b^2))) (b/((a^2)+(b^2)))


root :: Complex -> Complex
root (C x y)
    | y == 0 && x == 0  = C 0 0
    | y == 0 && x > 0   = C (sqrt ( ( x + sqrt ( (x^2) + 0 ) ) / 2 ) )  0
    | otherwise         = C (sqrt ( ( x + sqrt ( (x^2) + (y^2) ) ) / 2 ) ) ((y/(2*(sqrt ( ( x + sqrt ( (x^2) + (y^2) ) ) / 2 ) ) ) ) )


-- quadratic polynomial : a.x^2 + b.x + c
data Quad = Q {
    aCoeff, bCoeff, cCoeff :: Complex
    } deriving Eq


instance Show Quad where
    show (Q a b c) = show a ++ "x^2 + " ++ show b ++ "x + " ++ show c

solve :: Quad -> (Complex, Complex)
solve (Q a b c) = STUCK!

EDIT: I seem to have missed out the whole point of using my own complex number datatype is to learn about custom datatypes. I'm well aware that i could use complex.data. Any help that could be given using my solution so far would be greatly appreciated.\

EDIT 2: It seems that my initial question was worded horribly. I'm aware that the quadratic formula will return both (or just the one) root to me. Where I am having trouble is returning these roots as a (complex, complex) tuple with the code above.

I'm well aware that I could use the built in quadratic functions as have been displayed below, but this is not the exercise. The idea behind the exercise, and creating ones own complex number data type, is to learn about custom data types.

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(2

洒一地阳光 2024-08-05 10:54:56

就像 newacct 所说,这只是二次方程:

(-b +- sqrt(b^2 - 4ac)) / 2a
module QuadraticSolver where

import Data.Complex
data Quadratic a = Quadratic a a a deriving (Show, Eq)

roots :: (RealFloat a) => Quadratic a -> [ Complex a ]
roots (Quadratic a b c) = 
  if discriminant == 0 
  then [ numer / denom ]
  else [ (numer + root_discriminant) / denom,
         (numer - root_discriminant) / denom ]
  where discriminant = (b*b - 4*a*c)
        root_discriminant = if (discriminant < 0) 
                            then 0 :+ (sqrt $ -discriminant)
                            else (sqrt discriminant) :+ 0
        denom = 2*a :+ 0
        numer = (negate b) :+ 0

在实践中:

ghci> :l QuadraticSolver
Ok, modules loaded: QuadraticSolver.
ghci> roots (Quadratic 1 2 1)
[(-1.0) :+ 0.0]
ghci> roots (Quadratic 1 0 1)
[0.0 :+ 1.0,(-0.0) :+ (-1.0)]

并适应使用你的术语:

solve :: Quad -> (Complex, Complex)
solve (Q a b c) = ( sol (+), sol (-) )
  where sol op = (op (negate b) $ root $ b*b - 4*a*c) / (2 * a)

虽然我还没有测试过该代码

Like newacct said, it's just the quadratic equation:

(-b +- sqrt(b^2 - 4ac)) / 2a
module QuadraticSolver where

import Data.Complex
data Quadratic a = Quadratic a a a deriving (Show, Eq)

roots :: (RealFloat a) => Quadratic a -> [ Complex a ]
roots (Quadratic a b c) = 
  if discriminant == 0 
  then [ numer / denom ]
  else [ (numer + root_discriminant) / denom,
         (numer - root_discriminant) / denom ]
  where discriminant = (b*b - 4*a*c)
        root_discriminant = if (discriminant < 0) 
                            then 0 :+ (sqrt $ -discriminant)
                            else (sqrt discriminant) :+ 0
        denom = 2*a :+ 0
        numer = (negate b) :+ 0

in practice:

ghci> :l QuadraticSolver
Ok, modules loaded: QuadraticSolver.
ghci> roots (Quadratic 1 2 1)
[(-1.0) :+ 0.0]
ghci> roots (Quadratic 1 0 1)
[0.0 :+ 1.0,(-0.0) :+ (-1.0)]

And adapting to use your terms:

solve :: Quad -> (Complex, Complex)
solve (Q a b c) = ( sol (+), sol (-) )
  where sol op = (op (negate b) $ root $ b*b - 4*a*c) / (2 * a)

Although I haven't tested that code

清泪尽 2024-08-05 10:54:56

由于 Haskell 的 sqrt 也可以处理复数,rampion 的解决方案甚至可以进一步简化:

import Data.Complex

-- roots for quadratic equations with complex coefficients
croots :: (RealFloat a) =>
          (Complex a) -> (Complex a) -> (Complex a) -> [Complex a]
croots a b c
      | disc == 0 = [solution (+)]
      | otherwise = [solution (+), solution (-)]
   where disc = b*b - 4*a*c
         solution plmi = plmi (-b) (sqrt disc) / (2*a)

-- roots for quadratic equations with real coefficients
roots :: (RealFloat a) => a -> a -> a -> [Complex a]
roots a b c = croots (a :+ 0) (b :+ 0) (c :+ 0)

如果您更改类型以适应,您还可以将这个 croots 函数与您自己的数据类型一起使用您的实现(并调用您的 root 函数而不是 sqrt)。

Since Haskell's sqrt can also handle complex numbers, rampion's solution can even be further simplified:

import Data.Complex

-- roots for quadratic equations with complex coefficients
croots :: (RealFloat a) =>
          (Complex a) -> (Complex a) -> (Complex a) -> [Complex a]
croots a b c
      | disc == 0 = [solution (+)]
      | otherwise = [solution (+), solution (-)]
   where disc = b*b - 4*a*c
         solution plmi = plmi (-b) (sqrt disc) / (2*a)

-- roots for quadratic equations with real coefficients
roots :: (RealFloat a) => a -> a -> a -> [Complex a]
roots a b c = croots (a :+ 0) (b :+ 0) (c :+ 0)

You can also use this croots function with your own datatype, if you change the types to fit your implementation (and call your root function instead of sqrt).

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文