计算阶乘结果的数字尾随零
我正在尝试计算由阶乘产生的数字的尾随零(这意味着数字变得非常大)。 以下代码采用一个数字,计算该数字的阶乘,并计算尾随零。 但是,当数字大约为 25!
时,numZeros 不起作用。
public static void main(String[] args) {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
double fact;
int answer;
try {
int number = Integer.parseInt(br.readLine());
fact = factorial(number);
answer = numZeros(fact);
}
catch (NumberFormatException e) {
e.printStackTrace();
} catch (IOException e) {
e.printStackTrace();
}
}
public static double factorial (int num) {
double total = 1;
for (int i = 1; i <= num; i++) {
total *= i;
}
return total;
}
public static int numZeros (double num) {
int count = 0;
int last = 0;
while (last == 0) {
last = (int) (num % 10);
num = num / 10;
count++;
}
return count-1;
}
我并不担心这段代码的效率,而且我知道有多种方法可以使这段代码的效率更好。 我试图弄清楚为什么计算大于 25! 的数字的尾随零不起作用。
有任何想法吗?
I'm trying to count trailing zeros of numbers that are resulted from factorials (meaning that the numbers get quite large). Following code takes a number, compute the factorial of the number, and count the trailing zeros. However, when the number is about as large as 25!
, numZeros don't work.
public static void main(String[] args) {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
double fact;
int answer;
try {
int number = Integer.parseInt(br.readLine());
fact = factorial(number);
answer = numZeros(fact);
}
catch (NumberFormatException e) {
e.printStackTrace();
} catch (IOException e) {
e.printStackTrace();
}
}
public static double factorial (int num) {
double total = 1;
for (int i = 1; i <= num; i++) {
total *= i;
}
return total;
}
public static int numZeros (double num) {
int count = 0;
int last = 0;
while (last == 0) {
last = (int) (num % 10);
num = num / 10;
count++;
}
return count-1;
}
I am not worrying about the efficiency of this code, and I know that there are multiple ways to make the efficiency of this code BETTER. What I'm trying to figure out is why the counting trailing zeros of numbers that are greater than 25!
is not working.
Any ideas?
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(10)
您的任务不是计算阶乘,而是计算零的数量。 一个好的解决方案使用 http://en.wikipedia.org/wiki/Trailing_zeros 中的公式(你可以尝试证明这一点)
希望你能将其翻译成Java。 这只是计算 [n / 5] + [n / 25] + [n / 125] + [n / 625] + ... 并在除数大于 n 时停止。
不要使用大整数。 这是一个 bozosort。 对于大量数据,此类解决方案需要数秒的时间。
Your task is not to compute the factorial but the number of zeroes. A good solution uses the formula from http://en.wikipedia.org/wiki/Trailing_zeros (which you can try to prove)
Hope you can translate this to Java. This simply computes [n / 5] + [n / 25] + [n / 125] + [n / 625] + ... and stops when the divisor gets larger than n.
DON'T use BigIntegers. This is a bozosort. Such solutions require seconds of time for large numbers.
您只需要知道产品中有多少个 2 和 5 即可。 如果您计算尾随零,那么您实际上是在计算“10 能除这个数字多少次?”。 如果你代表n! 为 q*(2^a)*(5^b),其中 q 不能被 2 或 5 整除。然后,只需在第二个表达式中取 a 和 b 的最小值即可得出 10 能整除该数字的次数。 实际上做乘法是多余的。
编辑:数二也太过分了,所以你只需要五。
对于一些Python,我认为这应该有效:
You only really need to know how many 2s and 5s there are in the product. If you're counting trailing zeroes, then you're actually counting "How many times does ten divide this number?". if you represent n! as q*(2^a)*(5^b) where q is not divisible by 2 or 5. Then just taking the minimum of a and b in the second expression will give you how many times 10 divides the number. Actually doing the multiplication is overkill.
Edit: Counting the twos is also overkill, so you only really need the fives.
And for some python, I think this should work:
double 类型的精度有限,因此如果您使用的数字太大,则 double 将只是一个近似值。 要解决这个问题,您可以使用 BigInteger 之类的东西来使其适用于任意大的整数。
The double type has limited precision, so if the numbers you are working with get too big the double will be only an approximation. To work around this you can use something like BigInteger to make it work for arbitrarily large integers.
您可以使用 DecimalFormat 来格式化大数字。 如果您以这种方式格式化数字,您会得到科学记数法中的数字,那么每个数字都会就像 1.4567E7 这会让你的工作变得更容易。 因为E后面的数字——后面的字符数。 是我认为的尾随零的数量。
我不知道这是否是所需的确切模式。 您可以在此处查看如何形成模式< /a>
You can use a DecimalFormat to format big numbers. If you format your number this way you get the number in scientific notation then every number will be like 1.4567E7 this will make your work much easier. Because the number after the E - the number of characters behind the . are the number of trailing zeros I think.
I don't know if this is the exact pattern needed. You can see how to form the patterns here
我的两点建议:避免使用 double,因为它们容易出错。 在这种情况下,更好的数据类型是 BigInteger,这里有一个小方法可以帮助您:
My 2 cents: avoid to work with double since they are error-prone. A better datatype in this case is BigInteger, and here there is a small method that will help you:
这就是我的制作方法,但是更大的> 25阶乘长容量不够,应该使用Biginteger类,女巫我还不熟悉:)
This is how I made it, but with bigger > 25 factorial the long capacity is not enough and should be used the class Biginteger, with witch I am not familiar yet:)
最好的对数时间复杂度如下:
无耻地从 http 复制://www.programcreek.com/2014/04/leetcode-factorial-trailing-zeroes-java/
The best with logarithmic time complexity is the following:
shamelessly copied from http://www.programcreek.com/2014/04/leetcode-factorial-trailing-zeroes-java/
我在 Javascript 中也遇到了同样的问题,我解决了这个问题:
这个解决方案为您提供了尾随零的数量。
I had the same issue to solve in Javascript, and I solved it like:
This solution gives you the number of trailing zeros.
Java 的双倍最大值略高于 9 * 10 ^ 18,而为 25! 是 1.5 * 10 ^ 25。如果您希望能够拥有那么高的阶乘,您可能需要使用 BigInteger(类似于 BigDecimal 但不执行小数)。
Java's doubles max out at a bit over 9 * 10 ^ 18 where as 25! is 1.5 * 10 ^ 25. If you want to be able to have factorials that high you might want to use BigInteger (similar to BigDecimal but doesn't do decimals).
我写得很快,我认为它准确地解决了你的问题。 我使用 BigInteger 类来避免从双精度型到整数型的转换,这可能会给您带来问题。 我对几个超过 25 的大数进行了测试,例如 101,它准确地返回了 24 个零。
该方法背后的想法是,如果你取 25! 那么第一个计算是 25 * 24 = 600,因此您可以立即去掉两个零,然后执行 6 * 23 = 138。因此,它会计算阶乘以消除零。
既然你说你根本不关心运行时间(并不是说我的第一个特别有效,只是稍微更有效),这个只是执行阶乘然后计算零,所以它在概念上更简单:
I wrote this up real quick, I think it solves your problem accurately. I used the BigInteger class to avoid that cast from double to integer, which could be causing you problems. I tested it on several large numbers over 25, such as 101, which accurately returned 24 zeros.
The idea behind the method is that if you take 25! then the first calculation is 25 * 24 = 600, so you can knock two zeros off immediately and then do 6 * 23 = 138. So it calculates the factorial removing zeros as it goes.
Since you said you don't care about run time at all (not that my first was particularly efficient, just slightly more so) this one just does the factorial and then counts the zeros, so it's cenceptually simpler: