在 R 中操作网络数据

发布于 2024-07-29 01:54:31 字数 250 浏览 4 评论 0原文

我有一个数据框,详细说明了 N 个节点之间的边权重。 有处理此类数据的包吗?

例如,我想将以下信息绘制为网络:

  p1 p2 counts
1  a  b    100
2  a  c    200
3  a  d    100
4  b  c     80
5  b  d     90
6  b  e    100
7  c  d    100
8  c  e     40
9  d  e     60

I have a data frame detailing edge weights among N nodes. Is there a package for working with this sort of data?

For example, I would like to plot the following information as a network:

  p1 p2 counts
1  a  b    100
2  a  c    200
3  a  d    100
4  b  c     80
5  b  d     90
6  b  e    100
7  c  d    100
8  c  e     40
9  d  e     60

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(4

陈独秀 2024-08-05 01:54:31

一种选择是 network 包,它是 statnet R 软件包系列,用于统计社交网络分析。 它以稀疏的方式处理网络数据,这对于较大的数据集很有用。

下面,我执行以下操作:

  • 将边缘列表(前两列)加载到网络对象中
  • ,将计数分配为称为权重的边缘属性。
  • 使用 gplot 绘制网络图。 (有关更改边缘厚度的信息,请参阅帮助页面。)
  • 绘制社会矩阵(仅表示邻接矩阵的一组 5x5 块,其中 (i,j) 单元格由相对计数遮蔽)
A = read.table(file="so.txt",header=T)
A
      p1 p2 counts
    1  a  b    100
    2  a  c    200
    3  a  d    100
    4  b  c     80
    5  b  d     90
    6  b  e    100
    7  c  d    100
    8  c  e     40
    9  d  e     60

library(network)
net = network(A[,1:2])
# Get summary information about your network
net
     Network attributes:
      vertices = 5 
      directed = TRUE 
      hyper = FALSE 
      loops = FALSE 
      multiple = FALSE 
      bipartite = FALSE 
      total edges= 9 
        missing edges= 0 
        non-missing edges= 9 
        Vertex attribute names: 
        vertex.names 
     adjacency matrix:
      a b c d e
    a 0 1 1 1 0
    b 0 0 1 1 1
    c 0 0 0 1 1
    d 0 0 0 0 1
    e 0 0 0 0 0

set.edge.attribute(net,"weight",A[,3])
gplot(net)

## Another cool feature
s = as.sociomatrix(net,attrname="weight")
plot.sociomatrix(s)

One option is the network package, part of the statnet family of R packages for statistical social network analysis. It handles network data in a sparse way, which is nice for larger data sets.

Below, I do the following:

  • load the edgelist (the first two columns) into a network object
  • assign the counts to be an edge attribute called weight.
  • plot the network with gplot. (See the help page for changing the thickness of the edges.)
  • plot a sociomatrix (just a 5x5 set of blocks representing the adjacency matrix, where the (i,j) cell is shaded by the relative count)
A = read.table(file="so.txt",header=T)
A
      p1 p2 counts
    1  a  b    100
    2  a  c    200
    3  a  d    100
    4  b  c     80
    5  b  d     90
    6  b  e    100
    7  c  d    100
    8  c  e     40
    9  d  e     60

library(network)
net = network(A[,1:2])
# Get summary information about your network
net
     Network attributes:
      vertices = 5 
      directed = TRUE 
      hyper = FALSE 
      loops = FALSE 
      multiple = FALSE 
      bipartite = FALSE 
      total edges= 9 
        missing edges= 0 
        non-missing edges= 9 
        Vertex attribute names: 
        vertex.names 
     adjacency matrix:
      a b c d e
    a 0 1 1 1 0
    b 0 0 1 1 1
    c 0 0 0 1 1
    d 0 0 0 0 1
    e 0 0 0 0 0

set.edge.attribute(net,"weight",A[,3])
gplot(net)

## Another cool feature
s = as.sociomatrix(net,attrname="weight")
plot.sociomatrix(s)
草莓酥 2024-08-05 01:54:31

以下是如何在 igraph 中绘制数据的网络图:

d <- data.frame(p1=c('a', 'a', 'a', 'b', 'b', 'b', 'c', 'c', 'd'),
                p2=c('b', 'c', 'd', 'c', 'd', 'e', 'd', 'e', 'e'),
                counts=c(100, 200, 100,80, 90,100, 100,40,60))

library(igraph)
g <- graph.data.frame(d, directed=TRUE)
print(g, e=TRUE, v=TRUE)
tkplot(g, vertex.label=V(g)$name)

Here's how to make a network plot of the data in igraph:

d <- data.frame(p1=c('a', 'a', 'a', 'b', 'b', 'b', 'c', 'c', 'd'),
                p2=c('b', 'c', 'd', 'c', 'd', 'e', 'd', 'e', 'e'),
                counts=c(100, 200, 100,80, 90,100, 100,40,60))

library(igraph)
g <- graph.data.frame(d, directed=TRUE)
print(g, e=TRUE, v=TRUE)
tkplot(g, vertex.label=V(g)$name)
揽月 2024-08-05 01:54:31

我也一直在 igraph 工作。 创建图形的一种方法是将所有“从”“到”节点的列表写入文本文件,然后将其作为图形对象读回。 图对象可以经历许多图论过程,并且可以处理相当大的网络。

I've also been working in igraph. One way to create a graph is to write out a list of all "from" "to" nodes to a text file a read it back in as a graph object. The graph object can be subjected to many graph theoretic processes and can handle quite large networks.

云胡 2024-08-05 01:54:31

根据我的经验,igraph 是我最喜欢的大型图论工作包。 它内存效率高,并且有一些非常好的算法。 igraph 使用内部类似边缘列表的数据结构。
对于更简单/更小的事情,我倾向于使用“sna”包(“社交网络分析”)。 它非常适合交互式工作和较小网络的绘图。 sna 更多地使用邻接矩阵数据结构。

In my experience, igraph is my favorite package for large, graph-theoretic work. It is memory efficient and has some very good algorithms. igraph uses an internal edgelist-like data structure.
For simpler/smaller things I tend to use the 'sna' package ("social network analysis"). It's great for interactive work and plotting of smaller networks. sna uses more of an adjacency-matrix data structure.

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文