如何使用 SciPy 运行统计累积分布函数和概率密度函数?

发布于 2024-07-27 22:18:29 字数 551 浏览 2 评论 0原文

我是 Python 新手,也是 SciPy 库新手。 在深入 SciPy 世界之前,我想向列表中的专家询问一些问题。

我想知道是否有人可以提供有关如何运行两个统计函数的粗略指南:累积分布函数(CDF)和概率分布函数(PDF)。

我的用例如下:我有一个 exampleSpaceList [],其中有 1000 个浮点值。 当我的程序中生成一个新的浮点值时,我想在它的sampleList上运行CDF和PDF,并获得CDF的值小于或等于的概率和PDF的概率分布。

更多信息

基本上,在我的程序中,有些事件可能成功也可能失败。 如果它们成功,那么我会计算该事件的事件比率,并将其添加到我的 SampleSpaceList 中,直到达到阈值 1000。一旦达到阈值,则对于任何下一个事件比率; 我想知道该事件比率在我的系统中是否成功的概率。

我基本上想要得到的是特定事件比率的成功概率。

我不太确定 CDF 或 PDF 是否与我的问题相关,所以这就是为什么我想学习如何使用两者,但在任何给定时刻,我只会使用 CDF 或 PDF 来获得事件的概率 -比率成功。

I am new to Python and new to SciPy libraries. I wanted to take some ques from the experts here on the list before dive into SciPy world.

I was wondering if some one could provide a rough guide about how to run two stats functions: Cumulative Distribution Function (CDF) and Probability Distribution Function (PDF).

My use case is the following: I have a sampleSpaceList [] which have 1000 floating point values. When a new floating point value is generated in my program, I would like to run both CDF and PDF on the sampleList for it and get the probability of value less or equal for CDF and probability distribution for PDF.

some more information

Basically, in my program there are events which can either succeed or fail. If they succeed, then I calculate a event-ratio for that event and add to my sampleSpaceList until it reaches a threshold of 1000. Once the threshold is achieved, then for any next event-ratio; I would like to get a probability that whether that event-ratio would succeed or not in my system.

What I basically would like to get is the probability of success for a particular event ratio.

I am not very sure whether CDF or PDF will be relative to my problem so that 's why I wanted to learn how to use both but at any given moment, I will be only using either CDF or PDF to get a probability of event-ratio being successful.

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(1

巴黎夜雨 2024-08-03 22:18:30

请参阅这篇文章:SciPy 中的概率分布

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文