如何测试一个点是否在二维整数坐标中的凸多边形内部?

发布于 2024-07-27 00:39:12 字数 117 浏览 10 评论 0原文

多边形以 Vector2I 对象列表的形式给出(二维、整数坐标)。 如何测试给定点是否在内部? 我在网上找到的所有实现都因一些微不足道的反例而失败。 编写正确的实现似乎确实很难。 语言并不重要,因为我会自己移植。

The polygon is given as a list of Vector2I objects (2 dimensional, integer coordinates). How can i test if a given point is inside? All implementations i found on the web fail for some trivial counter-example. It really seems to be hard to write a correct implementation. The language does not matter as i will port it myself.

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(9

甜嗑 2024-08-03 00:39:12

如果它是凸的,检查它的一个简单方法是该点位于所有线段的同一侧(如果以相同的顺序遍历)。

您可以使用点积轻松检查这一点(因为它与线段和点之间形成的角度的余弦成正比,如果我们用边缘的法线计算它,那些具有正号的将位于右侧,并且左边有负号的)。

这是 Python 中的代码:

RIGHT = "RIGHT"
LEFT = "LEFT"

def inside_convex_polygon(point, vertices):
    previous_side = None
    n_vertices = len(vertices)
    for n in xrange(n_vertices):
        a, b = vertices[n], vertices[(n+1)%n_vertices]
        affine_segment = v_sub(b, a)
        affine_point = v_sub(point, a)
        current_side = get_side(affine_segment, affine_point)
        if current_side is None:
            return False #outside or over an edge
        elif previous_side is None: #first segment
            previous_side = current_side
        elif previous_side != current_side:
            return False
    return True

def get_side(a, b):
    x = cosine_sign(a, b)
    if x < 0:
        return LEFT
    elif x > 0: 
        return RIGHT
    else:
        return None

def v_sub(a, b):
    return (a[0]-b[0], a[1]-b[1])

def cosine_sign(a, b):
    return a[0]*b[1]-a[1]*b[0]

If it is convex, a trivial way to check it is that the point is laying on the same side of all the segments (if traversed in the same order).

You can check that easily with the dot product (as it is proportional to the cosine of the angle formed between the segment and the point, if we calculate it with the normal of the edge, those with positive sign would lay on the right side and those with negative sign on the left side).

Here is the code in Python:

RIGHT = "RIGHT"
LEFT = "LEFT"

def inside_convex_polygon(point, vertices):
    previous_side = None
    n_vertices = len(vertices)
    for n in xrange(n_vertices):
        a, b = vertices[n], vertices[(n+1)%n_vertices]
        affine_segment = v_sub(b, a)
        affine_point = v_sub(point, a)
        current_side = get_side(affine_segment, affine_point)
        if current_side is None:
            return False #outside or over an edge
        elif previous_side is None: #first segment
            previous_side = current_side
        elif previous_side != current_side:
            return False
    return True

def get_side(a, b):
    x = cosine_sign(a, b)
    if x < 0:
        return LEFT
    elif x > 0: 
        return RIGHT
    else:
        return None

def v_sub(a, b):
    return (a[0]-b[0], a[1]-b[1])

def cosine_sign(a, b):
    return a[0]*b[1]-a[1]*b[0]
梦醒灬来后我 2024-08-03 00:39:12

如果多边形是凸多边形,则在 C# 中,以下代码实现“测试是否总是在同一侧"方法,并且最多运行 O(n 个多边形点):

public static bool IsInConvexPolygon(Point testPoint, List<Point> polygon)
{
    //Check if a triangle or higher n-gon
    Debug.Assert(polygon.Length >= 3);

    //n>2 Keep track of cross product sign changes
    var pos = 0;
    var neg = 0;

    for (var i = 0; i < polygon.Count; i++)
    {
        //If point is in the polygon
        if (polygon[i] == testPoint)
            return true;

        //Form a segment between the i'th point
        var x1 = polygon[i].X;
        var y1 = polygon[i].Y;

        //And the i+1'th, or if i is the last, with the first point
        var i2 = (i+1)%polygon.Count;

        var x2 = polygon[i2].X;
        var y2 = polygon[i2].Y;

        var x = testPoint.X;
        var y = testPoint.Y;

        //Compute the cross product
        var d = (x - x1)*(y2 - y1) - (y - y1)*(x2 - x1);

        if (d > 0) pos++;
        if (d < 0) neg++;

        //If the sign changes, then point is outside
        if (pos > 0 && neg > 0)
            return false;
    }

    //If no change in direction, then on same side of all segments, and thus inside
    return true;
}

If the polygon is convex, then in C#, the following implements the "test if always on same side" method, and runs at most at O(n of polygon points):

public static bool IsInConvexPolygon(Point testPoint, List<Point> polygon)
{
    //Check if a triangle or higher n-gon
    Debug.Assert(polygon.Length >= 3);

    //n>2 Keep track of cross product sign changes
    var pos = 0;
    var neg = 0;

    for (var i = 0; i < polygon.Count; i++)
    {
        //If point is in the polygon
        if (polygon[i] == testPoint)
            return true;

        //Form a segment between the i'th point
        var x1 = polygon[i].X;
        var y1 = polygon[i].Y;

        //And the i+1'th, or if i is the last, with the first point
        var i2 = (i+1)%polygon.Count;

        var x2 = polygon[i2].X;
        var y2 = polygon[i2].Y;

        var x = testPoint.X;
        var y = testPoint.Y;

        //Compute the cross product
        var d = (x - x1)*(y2 - y1) - (y - y1)*(x2 - x1);

        if (d > 0) pos++;
        if (d < 0) neg++;

        //If the sign changes, then point is outside
        if (pos > 0 && neg > 0)
            return false;
    }

    //If no change in direction, then on same side of all segments, and thus inside
    return true;
}
疯狂的代价 2024-08-03 00:39:12

光线投射或缠绕方法是解决此问题最常见的方法。 有关详细信息,请参阅维基百科文章

另外,请查看此页面以获取详细记录溶液C.

The Ray Casting or Winding methods are the most common for this problem. See the Wikipedia article for details.

Also, Check out this page for a well-documented solution in C.

深海不蓝 2024-08-03 00:39:12

openCV 中的 pointPolygonTest 函数“确定点是否在轮廓内部、外部或位于边缘上”:
http://docs.opencv.org/modules/imgproc /doc/structural_analysis_and_shape_descriptors.html?highlight=pointpolygontest#pointpolygontest

The pointPolygonTest function in openCV " determines whether the point is inside a contour, outside, or lies on an edge":
http://docs.opencv.org/modules/imgproc/doc/structural_analysis_and_shape_descriptors.html?highlight=pointpolygontest#pointpolygontest

超可爱的懒熊 2024-08-03 00:39:12

fortran 的答案几乎对我有用,除了我发现我必须翻译多边形,以便您正在测试的点与原点相同。 这是我为实现此目的而编写的 JavaScript:

function Vec2(x, y) {
  return [x, y]
}
Vec2.nsub = function (v1, v2) {
  return Vec2(v1[0]-v2[0], v1[1]-v2[1])
}
// aka the "scalar cross product"
Vec2.perpdot = function (v1, v2) {
  return v1[0]*v2[1] - v1[1]*v2[0]
}

// Determine if a point is inside a polygon.
//
// point     - A Vec2 (2-element Array).
// polyVerts - Array of Vec2's (2-element Arrays). The vertices that make
//             up the polygon, in clockwise order around the polygon.
//
function coordsAreInside(point, polyVerts) {
  var i, len, v1, v2, edge, x
  // First translate the polygon so that `point` is the origin. Then, for each
  // edge, get the angle between two vectors: 1) the edge vector and 2) the
  // vector of the first vertex of the edge. If all of the angles are the same
  // sign (which is negative since they will be counter-clockwise) then the
  // point is inside the polygon; otherwise, the point is outside.
  for (i = 0, len = polyVerts.length; i < len; i++) {
    v1 = Vec2.nsub(polyVerts[i], point)
    v2 = Vec2.nsub(polyVerts[i+1 > len-1 ? 0 : i+1], point)
    edge = Vec2.nsub(v1, v2)
    // Note that we could also do this by using the normal + dot product
    x = Vec2.perpdot(edge, v1)
    // If the point lies directly on an edge then count it as in the polygon
    if (x < 0) { return false }
  }
  return true
}

fortran's answer almost worked for me except I found I had to translate the polygon so that the point you're testing is the same as the origin. Here is the JavaScript that I wrote to make this work:

function Vec2(x, y) {
  return [x, y]
}
Vec2.nsub = function (v1, v2) {
  return Vec2(v1[0]-v2[0], v1[1]-v2[1])
}
// aka the "scalar cross product"
Vec2.perpdot = function (v1, v2) {
  return v1[0]*v2[1] - v1[1]*v2[0]
}

// Determine if a point is inside a polygon.
//
// point     - A Vec2 (2-element Array).
// polyVerts - Array of Vec2's (2-element Arrays). The vertices that make
//             up the polygon, in clockwise order around the polygon.
//
function coordsAreInside(point, polyVerts) {
  var i, len, v1, v2, edge, x
  // First translate the polygon so that `point` is the origin. Then, for each
  // edge, get the angle between two vectors: 1) the edge vector and 2) the
  // vector of the first vertex of the edge. If all of the angles are the same
  // sign (which is negative since they will be counter-clockwise) then the
  // point is inside the polygon; otherwise, the point is outside.
  for (i = 0, len = polyVerts.length; i < len; i++) {
    v1 = Vec2.nsub(polyVerts[i], point)
    v2 = Vec2.nsub(polyVerts[i+1 > len-1 ? 0 : i+1], point)
    edge = Vec2.nsub(v1, v2)
    // Note that we could also do this by using the normal + dot product
    x = Vec2.perpdot(edge, v1)
    // If the point lies directly on an edge then count it as in the polygon
    if (x < 0) { return false }
  }
  return true
}
滥情稳全场 2024-08-03 00:39:12

我所知道的就是这样的。

您在多边形外部的某处选择一个点,它可能远离几何图形。
然后从这一点画一条线。 我的意思是你用这两点创建一个直线方程。

然后对于该多边形中的每条线,检查它们是否相交。

它们相交线数的总和可以告诉你它是否在内部。

如果是奇数:在里面

如果是偶数:在外面

the way i know is something like that.

you pick a point somewhere outside the polygon it may be far away from the geometry.
then you draw a line from this point. i mean you create a line equation with these two points.

then for every line in this polygon, you check if they intersect.

them sum of number of intersected lines give you it is inside or not.

if it is odd : inside

if it is even : outside

徒留西风 2024-08-03 00:39:12

您必须检查要测试的点是否保持其相对于凸多边形的所有线段的方向。 如果是的话,它就在里面。 要对每个线段执行此操作,请检查线段向量 AB 和点向量 AP 的行列式是否保留其符号。 如果行列式为零,则该点位于线段上。

为了在 C# 代码中公开这一点,

public bool IsPointInConvexPolygon(...)
{
    Point pointToTest = new Point(...);
    Point pointA = new Point(...);
    //....

    var polygon = new List<Point> { pointA, pointB, pointC, pointD ... };
    double prevPosition = 0;
    // assuming polygon is convex.
    for (var i = 0; i < polygon.Count; i++)
    {
        var startPointSegment = polygon[i];
        // end point is first point if the start point is the last point in the list
        // (closing the polygon)
        var endPointSegment = polygon[i < polygon.Count - 1 ? i + 1 : 0];
        if (pointToTest.HasEqualCoordValues(startPointSegment) ||
              pointToTest.HasEqualCoordValues(endPointSegment))
            return true;

        var position = GetPositionRelativeToSegment(pointToTest, startPointSegment, endPointSegment);
        if (position == 0) // point position is zero so we are on the segment, we're on the polygon.
            return true;

        // after we checked the test point's position relative to the first segment, the position of the point 
        // relative to all other segments must be the same as the first position. If not it means the point 
        // is not inside the convex polygon.
        if (i > 0 && prevPosition != position)
            return false;

        prevPosition = position;
    }
    return true;
}

行列式微积分,

public double GetPositionRelativeToSegment(Point pointToTest, Point segmentStart, Point segmentEnd)
{
    return Math.Sign((pointToTest.X - segmentStart.X) * (segmentEnd.Y - segmentStart.Y) -
        (pointToTest.Y - segmentStart.Y) * (segmentEnd.X - segmentStart.X));
}

You have to check that the point to test maintains it's orientation relative to all segments of the convex polygon. If so, it's inside. To do this for each segment check if the determinant of the segment vector say AB and the point's vector say AP preserves it's sign. If the determinant is zero than the point is on the segment.

To expose this in C# code,

public bool IsPointInConvexPolygon(...)
{
    Point pointToTest = new Point(...);
    Point pointA = new Point(...);
    //....

    var polygon = new List<Point> { pointA, pointB, pointC, pointD ... };
    double prevPosition = 0;
    // assuming polygon is convex.
    for (var i = 0; i < polygon.Count; i++)
    {
        var startPointSegment = polygon[i];
        // end point is first point if the start point is the last point in the list
        // (closing the polygon)
        var endPointSegment = polygon[i < polygon.Count - 1 ? i + 1 : 0];
        if (pointToTest.HasEqualCoordValues(startPointSegment) ||
              pointToTest.HasEqualCoordValues(endPointSegment))
            return true;

        var position = GetPositionRelativeToSegment(pointToTest, startPointSegment, endPointSegment);
        if (position == 0) // point position is zero so we are on the segment, we're on the polygon.
            return true;

        // after we checked the test point's position relative to the first segment, the position of the point 
        // relative to all other segments must be the same as the first position. If not it means the point 
        // is not inside the convex polygon.
        if (i > 0 && prevPosition != position)
            return false;

        prevPosition = position;
    }
    return true;
}

The determinant calculus,

public double GetPositionRelativeToSegment(Point pointToTest, Point segmentStart, Point segmentEnd)
{
    return Math.Sign((pointToTest.X - segmentStart.X) * (segmentEnd.Y - segmentStart.Y) -
        (pointToTest.Y - segmentStart.Y) * (segmentEnd.X - segmentStart.X));
}
紅太極 2024-08-03 00:39:12

或者从写这本书的人那里看到 - 几何页面

具体< a href="http://local.wasp.uwa.edu.au/~pbourke/geometry/insidepoly/" rel="nofollow noreferrer">此页面,他讨论了为什么缠绕规则通常比射线更好穿越。

编辑 - 抱歉,这不是 Jospeh O'Rourke 写了这本出色的书 < a href="http://maven.smith.edu/~orourke/books/compgeom.html" rel="nofollow noreferrer">C 语言计算几何,作者是 Paul Bourke,但仍然是一个非常非常好的资源几何算法。

Or from the man that wrote the book see - geometry page

Specifically this page, he discusses why winding rule is generally better than ray crossing.

edit - Sorry this isn't Jospeh O'Rourke who wrote the excellent book Computational Geometry in C, it's Paul Bourke but still a very very good source of geometry algorithms.

野稚 2024-08-03 00:39:12

这是我在项目中使用的版本。 它非常优雅和简洁。 适用于各种多边形。

http://www.eecs.umich.edu/courses/ eecs380/HANDOUTS/PROJ2/InsidePoly.html

以下代码由 Randolph Franklin 编写,对于内部点返回 1,对于外部点返回 0。

int pnpoly(int npol, float *xp, float *yp, float x, float y)
{
  int i, j, c = 0;
  for (i = 0, j = npol-1; i < npol; j = i++) {
    if ((((yp[i] <= y) && (y < yp[j])) ||
         ((yp[j] <= y) && (y < yp[i]))) &&
        (x < (xp[j] - xp[i]) * (y - yp[i]) / (yp[j] - yp[i]) + xp[i]))
      c = !c;
  }
  return c;
}

Here is the version I use in my project. It's very elegant and concise. Works for every kind of polygons.

http://www.eecs.umich.edu/courses/eecs380/HANDOUTS/PROJ2/InsidePoly.html

The following code is by Randolph Franklin, it returns 1 for interior points and 0 for exterior points.

int pnpoly(int npol, float *xp, float *yp, float x, float y)
{
  int i, j, c = 0;
  for (i = 0, j = npol-1; i < npol; j = i++) {
    if ((((yp[i] <= y) && (y < yp[j])) ||
         ((yp[j] <= y) && (y < yp[i]))) &&
        (x < (xp[j] - xp[i]) * (y - yp[i]) / (yp[j] - yp[i]) + xp[i]))
      c = !c;
  }
  return c;
}
~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文