SciPy 中的插值:找到产生 Y 的 X

发布于 2024-07-25 08:59:03 字数 496 浏览 5 评论 0原文

有没有更好的方法来找到哪个X给了我在SciPy中寻找的Y? 我刚刚开始使用SciPy,对每个函数都不是太熟悉。

import numpy as np
import matplotlib.pyplot as plt
from scipy import interpolate

x = [70, 80, 90, 100, 110]
y = [49.7, 80.6, 122.5, 153.8, 163.0]
tck = interpolate.splrep(x,y,s=0)
xnew = np.arange(70,111,1)
ynew = interpolate.splev(xnew,tck,der=0)
plt.plot(x,y,'x',xnew,ynew)
plt.show()
t,c,k=tck
yToFind = 140
print interpolate.sproot((t,c-yToFind,k)) #Lowers the spline at the abscissa

Is there a better way to find which X gives me the Y I am looking for in SciPy? I just began using SciPy and I am not too familiar with each function.

import numpy as np
import matplotlib.pyplot as plt
from scipy import interpolate

x = [70, 80, 90, 100, 110]
y = [49.7, 80.6, 122.5, 153.8, 163.0]
tck = interpolate.splrep(x,y,s=0)
xnew = np.arange(70,111,1)
ynew = interpolate.splev(xnew,tck,der=0)
plt.plot(x,y,'x',xnew,ynew)
plt.show()
t,c,k=tck
yToFind = 140
print interpolate.sproot((t,c-yToFind,k)) #Lowers the spline at the abscissa

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(3

瞎闹 2024-08-01 08:59:04

如果您需要的只是线性插值,您可以使用 interp 函数。

If all you need is linear interpolation, you could use the interp function in numpy.

第几種人 2024-08-01 08:59:04

我可能误解了你的问题,如果是的话我很抱歉。 我认为你不需要使用 SciPy。 NumPy 具有最小二乘函数。

#!/usr/bin/env python

from numpy.linalg.linalg import lstsq



def find_coefficients(data, exponents):
    X = tuple((tuple((pow(x,p) for p in exponents)) for (x,y) in data))
    y = tuple(((y) for (x,y) in data))
    x, resids, rank, s = lstsq(X,y)
    return x

if __name__ == "__main__":
    data = tuple((
        (1.47, 52.21),
        (1.50, 53.12),
        (1.52, 54.48),
        (1.55, 55.84),
        (1.57, 57.20),
        (1.60, 58.57),
        (1.63, 59.93),
        (1.65, 61.29),
        (1.68, 63.11),
        (1.70, 64.47),
        (1.73, 66.28),
        (1.75, 68.10),
        (1.78, 69.92),
        (1.80, 72.19),
        (1.83, 74.46)
    ))
    print find_coefficients(data, range(3))

这将返回 [128.81280358 -143.16202286 61.96032544]。

>>> x=1.47 # the first of the input data
>>> 128.81280358 + -143.16202286*x + 61.96032544*(x**2)
52.254697219095988

0.04出,还不错

I may have misunderstood your question, if so I'm sorry. I don't think you need to use SciPy. NumPy has a least squares function.

#!/usr/bin/env python

from numpy.linalg.linalg import lstsq



def find_coefficients(data, exponents):
    X = tuple((tuple((pow(x,p) for p in exponents)) for (x,y) in data))
    y = tuple(((y) for (x,y) in data))
    x, resids, rank, s = lstsq(X,y)
    return x

if __name__ == "__main__":
    data = tuple((
        (1.47, 52.21),
        (1.50, 53.12),
        (1.52, 54.48),
        (1.55, 55.84),
        (1.57, 57.20),
        (1.60, 58.57),
        (1.63, 59.93),
        (1.65, 61.29),
        (1.68, 63.11),
        (1.70, 64.47),
        (1.73, 66.28),
        (1.75, 68.10),
        (1.78, 69.92),
        (1.80, 72.19),
        (1.83, 74.46)
    ))
    print find_coefficients(data, range(3))

This will return [ 128.81280358 -143.16202286 61.96032544].

>>> x=1.47 # the first of the input data
>>> 128.81280358 + -143.16202286*x + 61.96032544*(x**2)
52.254697219095988

0.04 out, not bad

記柔刀 2024-08-01 08:59:03

scipy 中的 UnivariateSpline 类使样条曲线变得更加Python化。

x = [70, 80, 90, 100, 110]
y = [49.7, 80.6, 122.5, 153.8, 163.0]
f = interpolate.UnivariateSpline(x, y, s=0)
xnew = np.arange(70,111,1)

plt.plot(x,y,'x',xnew,f(xnew))

要在 y 处找到 x,请执行以下操作:

yToFind = 140
yreduced = np.array(y) - yToFind
freduced = interpolate.UnivariateSpline(x, yreduced, s=0)
freduced.roots()

我认为根据 y 对 x 进行插值可能会起作用,但它采用了稍微不同的路线。 分数越多,可能会更接近。

The UnivariateSpline class in scipy makes doing splines much more pythonic.

x = [70, 80, 90, 100, 110]
y = [49.7, 80.6, 122.5, 153.8, 163.0]
f = interpolate.UnivariateSpline(x, y, s=0)
xnew = np.arange(70,111,1)

plt.plot(x,y,'x',xnew,f(xnew))

To find x at y then do:

yToFind = 140
yreduced = np.array(y) - yToFind
freduced = interpolate.UnivariateSpline(x, yreduced, s=0)
freduced.roots()

I thought interpolating x in terms of y might work but it takes a somewhat different route. It might be closer with more points.

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文