根据人名匹配记录
是否有任何工具或方法可用于在两个不同数据源之间进行人名匹配?
这些系统没有其他通用信息,并且在许多情况下输入的名称都不同。
非精确匹配示例:
King Jr., Martin Luther = King, Martin(不包括后缀)
Erving, Dr. J. = Erving, J.(不包括前缀)
奥巴马,巴拉克·侯赛因 = 奥巴马,巴拉克(不包括中间名)
Pufnstuf, HR = Pufnstuf, Haibane Renmei (比赛缩写)
Tankengine, Thomas = Tankengine, Tom(匹配常见昵称)
Flair, Rick "the Natureboy" = Flair, Natureboy(昵称匹配)
Are there any tools or methods that can be used for matching by a person's name between two different data sources?
The systems have no other common information and the names have been entered differently in many cases.
Examples of non-exact matches:
King Jr., Martin Luther = King, Martin (exclude suffix)
Erving, Dr. J. = Erving, J. (exclude prefix)
Obama, Barak Hussein = Obama, Barak (exclude middle name)
Pufnstuf, H.R. = Pufnstuf, Haibane Renmei (match abbreviations)
Tankengine, Thomas = Tankengine, Tom (match common nicknames)
Flair, Rick "the Natureboy" = Flair, Natureboy (match on nickname)
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(5)
我必须使用建议的各种技术。 感谢您为我指明了正确的方向。 希望以下内容能够帮助其他人解决此类问题。
删除多余字符
用法:
将名称拆分为多个部分
用法:
常用昵称:
I基于此列表创建了一个表,并使用它来连接通用名称等效项。
用法:
语音算法 (Jaro Winkler):
令人惊叹的文章,Beyond SoundEx - MS SQL Server 中的模糊搜索功能,展示如何安装和使用SimMetrics< /a> 库进入 SQL Server。 该库可让您找到字符串之间的相对相似性,并包含多种算法。 我最终主要使用 Jaro Winkler 来匹配名称。
用法:
I had to use a variety of techniques suggested. Thanks pointing me in the right direction(s). Hopefully, the following will help someone else out with this type of problem to solve.
Removing excess characters
Usage:
Split name into parts
Usage:
Common nicknames:
I created a table based on this list and used it to join on common name equivalents.
Usage:
Phonetic algorithms (Jaro Winkler):
The amazing article, Beyond SoundEx - Functions for Fuzzy Searching in MS SQL Server, shows how to install and use the SimMetrics library into SQL Server. This library lets you find relative similarity between strings and includes numerous algorithms. I ended up mostly using Jaro Winkler to match the names.
Usage:
这是一个非常复杂的问题 - 有很多昂贵的工具可以正确地解决它。
如果您想知道为什么不能以汤姆、迪克或哈利(或比尔)的身份办理航班登机手续
或者为什么禁飞名单和恐怖分子观察名单不起作用 - 考虑一下:
(1) 穆阿迈尔·卡扎菲
(2) 穆阿迈尔·卡扎菲
(3) 穆阿迈尔·卡扎菲
(4) 穆阿迈尔·卡扎菲
(5) 穆阿迈尔·卡扎菲
(6) 穆阿迈尔·卡扎菲
(7) 穆阿迈尔·卡扎菲
(8) 莫阿梅尔·埃尔·卡扎菲
(9) 穆阿马尔·卡扎菲
(10) 穆阿迈尔·卡萨菲
(11) 穆阿迈尔·卡塔菲
(12) 穆阿迈尔·卡扎菲
(13) 莫阿马尔·卡扎菲
(14) 穆阿迈尔·卡扎菲
(15) 穆阿迈尔·卡扎菲
(16) 穆阿迈尔·卡扎菲
(17) 穆阿马尔·卡扎菲
(18) 穆阿迈尔·卡扎菲
(19)穆阿迈尔·卡扎菲
(20) 穆阿迈尔·卡扎菲
(21) 穆阿马尔·卡扎菲
(22) 穆阿迈尔·卡扎菲
(23)穆阿迈尔·卡扎菲
(24)穆阿迈尔·卡扎菲
(25) 穆阿迈尔·卡扎菲
(26) 穆阿迈尔·夸塔菲
(27)穆阿迈尔·格达菲
(28) 穆阿马尔·卡扎菲
(29) 穆阿迈尔·卡扎菲
(30) 莫阿迈尔·库扎菲
(31) 穆阿迈尔·卡扎菲
(32) Mulazim Awwal Mu'ammar Muhammad Abu Minyar al-Qadhafi
这只是官方拼写 - 不包括拼写错误!
It's a very complex problem - and there are a lot of expensive tools to do it correctly.
If you ever wondered why you can't check in on a flight as Tom, Dick or Harry (or Bill)
Or why no-fly lists and terrorists watch lists don't work -consider:
(1) Muammar Qaddafi
(2) Mo'ammar Gadhafi
(3) Muammar Kaddafi
(4) Muammar Qadhafi
(5) Moammar El Kadhafi
(6) Muammar Gadafi
(7) Mu'ammar al-Qadafi
(8) Moamer El Kazzafi
(9) Moamar al-Gaddafi
(10) Mu'ammar Al Qathafi
(11) Muammar Al Qathafi
(12) Mo'ammar el-Gadhafi
(13) Moamar El Kadhafi
(14) Muammar al-Qadhafi
(15) Mu'ammar al-Qadhdhafi
(16) Mu'ammar Qadafi
(17) Moamar Gaddafi
(18) Mu'ammar Qadhdhafi
(19) Muammar Khaddafi
(20) Muammar al-Khaddafi
(21) Mu'amar al-Kadafi
(22) Muammar Ghaddafy
(23) Muammar Ghadafi
(24) Muammar Ghaddafi
(25) Muamar Kaddafi
(26) Muammar Quathafi
(27) Muammar Gheddafi
(28) Muamar Al-Kaddafi
(29) Moammar Khadafy
(30) Moammar Qudhafi
(31) Mu'ammar al-Qaddafi
(32) Mulazim Awwal Mu'ammar Muhammad Abu Minyar al-Qadhafi
And that's just official spellings - it doesn't include typos!
对于这种情况,我经常使用 soundex 类型的算法。 尝试使用 Double Metaphone 算法。 如果您使用 SQL Server,则有一些源代码可用于创建用户定义函数。
因为您已经转置了数据,所以您可能需要对其进行一些规范化,例如,删除所有逗号并按第一个字母对结果单词进行排序。 这会给你一些更好的匹配潜力。 如果中间加上了文字,那就有点难了。 您可以考虑将名称分解为单词,使用 Double Metaphone 检查另一列中是否有匹配的单词,然后收集匹配与单词的总数,这将告诉您两列的接近程度。
在进行比较之前,我还会过滤掉 Dr.、Mr.、Ms.、Mrs. 等常用词。
I often employ soundex-type algorithms for this type of situation. Try the Double Metaphone algorithm. If you are using SQL Server, there is some source code to create a user defined function.
Because you have transposed data, you may want to normalize it a bit, e.g., remove all commas and the sort resulting words by first letter. That will give you some better matching potential. In the case where words have been added in the middle, it gets a bit tougher. You could consider breaking a name into words, checking with Double Metaphone whether there is a word in the other column that matches, and then collect the overall count of matches vs. words, which will tell you how close the two columns are.
I would also filter out common words like Dr., Mr., Ms., Mrs., etc., before doing the comparisons.
以下是一些选项:
语音算法...
Soundex (http://en.wikipedia.org/wiki/ Soundex)
双变音位 (http://en.wikipedia.org/wiki/Double_Metaphone)
编辑距离 (http://en.wikipedia.org/wiki/Levenshtein_distance)
Jaro-Winkler 距离 (http://en.wikipedia.org/wiki/Jaro-Winkler_distance)
您可以尝试的另一件事是将每个单词(按空格或连字符分割)与另一个名称中的每个单词进行比较,看看有多少单词匹配。 也许将其与语音算法结合起来以获得更模糊的匹配。 对于庞大的数据集,您可能需要对每个单词建立索引并将其与名称 id 进行匹配。 对于缩写匹配,您可以仅比较第一个字母。 当您比较单词时,您可能也想忽略除字母之外的任何内容。
许多语音算法都有开源/在线示例。
Here are some options:
Phonetic algorithms...
Soundex (http://en.wikipedia.org/wiki/Soundex)
Double Metaphone (http://en.wikipedia.org/wiki/Double_Metaphone)
Edit Distance (http://en.wikipedia.org/wiki/Levenshtein_distance)
Jaro-Winkler Distance (http://en.wikipedia.org/wiki/Jaro-Winkler_distance)
Another thing you could try would be to compare each word (splitting on space and maybe hyphen) with each word in the other name and see how many words match up. Maybe combine this with phonetic algorithms for more fuzzy matching. For a huge data set, you would want to index each word and match it with a name id. For abbreviation matching you could compare just the first letter. You probably want to ignore anything but letters when you compare words as well.
Many of the phonetic algorithms have open source / samples online.