遗传编程的实施

发布于 2024-07-24 08:24:53 字数 161 浏览 10 评论 0原文

我熟悉遗传编程的一般性,但想知道在哪里可以找到一些可以向我展示实现遗传编程的细节的东西。 我使用 C# 和 .NET 3.5,我想将遗传编程用于寻路之类的事情,通常只是想看看它能做什么。 编辑:我可能应该澄清我正在寻找的内容:我感兴趣的是使用哪种数据结构来存储语法树,如何执行繁殖操作,诸如此类的事情。

I am familiar with the generalities of genetic programming but am wondering where i might find something that shows me details of implementing genetic programming. I use C# and .NET 3.5, and I would like to put to use genetic programming for things like pathfinding, and generally just want to see what it can do.
EDIT: I should probably clarify what I'm looking for: I'm interested in what sort of data structures would be used to store the syntax trees, how a breeding operation might be performed, that sort of thing.

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(4

预谋 2024-07-31 08:24:53

这是对 C++ HelloWorld 示例之一的快速重写这帮助我学习遗传编程:

using ga_vector = List<ga_struct>;

class ga_struct
{
    public ga_struct(string str, uint fitness)
    {
        Str = str;
        Fitness = fitness;
    }

    public string Str { get; set; }
    public uint Fitness { get; set; }
}

class Program
{

    private const int GA_POPSIZE = 2048;
    private const int GA_MAXITER = 16384;
    private const float GA_ELITRATE = 0.10f;
    private const float GA_MUTATIONRATE = 0.25f;
    private const float GA_MUTATION = 32767 * GA_MUTATIONRATE;
    private const string GA_TARGET = "Hello world!";

    private static readonly Random random = new Random((int)DateTime.Now.Ticks);

    static void Main(string[] args)
    {
        ga_vector popAlpha = new ga_vector();
        ga_vector popBeta = new ga_vector();

        InitPopulation(ref popAlpha, ref popBeta);
        ga_vector population = popAlpha;
        ga_vector buffer = popBeta;

        for (int i = 0; i < GA_MAXITER; i++)
        {
            CalcFitness(ref population);
            SortByFitness(ref population);
            PrintBest(ref population);

            if (population[0].Fitness == 0) break;

            Mate(ref population, ref buffer);
            Swap(ref population, ref buffer);
        }

        Console.ReadKey();
    }

    static void Swap(ref ga_vector population, ref ga_vector buffer)
    {
        var temp = population;
        population = buffer;
        buffer = temp;
    }

    static void InitPopulation(ref ga_vector population, ref ga_vector buffer)
    {
        int tsize = GA_TARGET.Length;
        for (int i = 0; i < GA_POPSIZE; i++)
        {
            var citizen = new ga_struct(string.Empty, 0);

            for (int j = 0; j < tsize; j++)
            {
                citizen.Str += Convert.ToChar(random.Next(90) + 32);
            }

            population.Add(citizen);
            buffer.Add(new ga_struct(string.Empty, 0));
        }
    }

    static void CalcFitness(ref ga_vector population)
    {
        const string target = GA_TARGET;
        int tsize = target.Length;

        for (int i = 0; i < GA_POPSIZE; i++)
        {
            uint fitness = 0;
            for (int j = 0; j < tsize; j++)
            {
                fitness += (uint) Math.Abs(population[i].Str[j] - target[j]);
            }

            population[i].Fitness = fitness;
        }
    }

    static int FitnessSort(ga_struct x, ga_struct y)
    {
        return x.Fitness.CompareTo(y.Fitness);
    }

    static void SortByFitness(ref ga_vector population)
    {
        population.Sort((x, y) => FitnessSort(x, y));
    }

    static void Elitism(ref ga_vector population, ref ga_vector buffer, int esize)
    {
        for (int i = 0; i < esize; i++)
        {
            buffer[i].Str = population[i].Str;
            buffer[i].Fitness = population[i].Fitness;
        }
    }

    static void Mutate(ref ga_struct member)
    {
        int tsize = GA_TARGET.Length;
        int ipos = random.Next(tsize);
        int delta = random.Next(90) + 32;

        var mutated = member.Str.ToCharArray();
        Convert.ToChar((member.Str[ipos] + delta)%123).ToString().CopyTo(0, mutated, ipos, 1);
        member.Str = mutated.ToString();
    }

    static void Mate(ref ga_vector population, ref ga_vector buffer)
    {
        const int esize = (int) (GA_POPSIZE*GA_ELITRATE);
        int tsize = GA_TARGET.Length, spos, i1, i2;

        Elitism(ref population, ref buffer, esize);

        for (int i = esize; i < GA_POPSIZE; i++)
        {
            i1 = random.Next(GA_POPSIZE/2);
            i2 = random.Next(GA_POPSIZE/2);
            spos = random.Next(tsize);

            buffer[i].Str = population[i1].Str.Substring(0, spos) + population[i2].Str.Substring(spos, tsize - spos);

            if (random.Next() < GA_MUTATION)
            {
                var mutated = buffer[i];
                Mutate(ref mutated);
                buffer[i] = mutated;
            }
        }
    }

    static void PrintBest(ref ga_vector gav)
    {
        Console.WriteLine("Best: " + gav[0].Str + " (" + gav[0].Fitness + ")");
    }

可能会有一些小错误,但除此之外它看起来工作正常。 也可以本着 C# 的精神写得更好,但这些只是细节。 :)

Here is a quick rewrite of one of C++ HelloWorld examples that helped me learn genetic programming:

using ga_vector = List<ga_struct>;

class ga_struct
{
    public ga_struct(string str, uint fitness)
    {
        Str = str;
        Fitness = fitness;
    }

    public string Str { get; set; }
    public uint Fitness { get; set; }
}

class Program
{

    private const int GA_POPSIZE = 2048;
    private const int GA_MAXITER = 16384;
    private const float GA_ELITRATE = 0.10f;
    private const float GA_MUTATIONRATE = 0.25f;
    private const float GA_MUTATION = 32767 * GA_MUTATIONRATE;
    private const string GA_TARGET = "Hello world!";

    private static readonly Random random = new Random((int)DateTime.Now.Ticks);

    static void Main(string[] args)
    {
        ga_vector popAlpha = new ga_vector();
        ga_vector popBeta = new ga_vector();

        InitPopulation(ref popAlpha, ref popBeta);
        ga_vector population = popAlpha;
        ga_vector buffer = popBeta;

        for (int i = 0; i < GA_MAXITER; i++)
        {
            CalcFitness(ref population);
            SortByFitness(ref population);
            PrintBest(ref population);

            if (population[0].Fitness == 0) break;

            Mate(ref population, ref buffer);
            Swap(ref population, ref buffer);
        }

        Console.ReadKey();
    }

    static void Swap(ref ga_vector population, ref ga_vector buffer)
    {
        var temp = population;
        population = buffer;
        buffer = temp;
    }

    static void InitPopulation(ref ga_vector population, ref ga_vector buffer)
    {
        int tsize = GA_TARGET.Length;
        for (int i = 0; i < GA_POPSIZE; i++)
        {
            var citizen = new ga_struct(string.Empty, 0);

            for (int j = 0; j < tsize; j++)
            {
                citizen.Str += Convert.ToChar(random.Next(90) + 32);
            }

            population.Add(citizen);
            buffer.Add(new ga_struct(string.Empty, 0));
        }
    }

    static void CalcFitness(ref ga_vector population)
    {
        const string target = GA_TARGET;
        int tsize = target.Length;

        for (int i = 0; i < GA_POPSIZE; i++)
        {
            uint fitness = 0;
            for (int j = 0; j < tsize; j++)
            {
                fitness += (uint) Math.Abs(population[i].Str[j] - target[j]);
            }

            population[i].Fitness = fitness;
        }
    }

    static int FitnessSort(ga_struct x, ga_struct y)
    {
        return x.Fitness.CompareTo(y.Fitness);
    }

    static void SortByFitness(ref ga_vector population)
    {
        population.Sort((x, y) => FitnessSort(x, y));
    }

    static void Elitism(ref ga_vector population, ref ga_vector buffer, int esize)
    {
        for (int i = 0; i < esize; i++)
        {
            buffer[i].Str = population[i].Str;
            buffer[i].Fitness = population[i].Fitness;
        }
    }

    static void Mutate(ref ga_struct member)
    {
        int tsize = GA_TARGET.Length;
        int ipos = random.Next(tsize);
        int delta = random.Next(90) + 32;

        var mutated = member.Str.ToCharArray();
        Convert.ToChar((member.Str[ipos] + delta)%123).ToString().CopyTo(0, mutated, ipos, 1);
        member.Str = mutated.ToString();
    }

    static void Mate(ref ga_vector population, ref ga_vector buffer)
    {
        const int esize = (int) (GA_POPSIZE*GA_ELITRATE);
        int tsize = GA_TARGET.Length, spos, i1, i2;

        Elitism(ref population, ref buffer, esize);

        for (int i = esize; i < GA_POPSIZE; i++)
        {
            i1 = random.Next(GA_POPSIZE/2);
            i2 = random.Next(GA_POPSIZE/2);
            spos = random.Next(tsize);

            buffer[i].Str = population[i1].Str.Substring(0, spos) + population[i2].Str.Substring(spos, tsize - spos);

            if (random.Next() < GA_MUTATION)
            {
                var mutated = buffer[i];
                Mutate(ref mutated);
                buffer[i] = mutated;
            }
        }
    }

    static void PrintBest(ref ga_vector gav)
    {
        Console.WriteLine("Best: " + gav[0].Str + " (" + gav[0].Fitness + ")");
    }

There might be some minor errors but otherwise it looks it's working ok. Also it could be written better in spirit of C# but those are just details. :)

无力看清 2024-07-31 08:24:53

罗杰·阿尔辛的《蒙娜丽莎》项目就是一个很好的例子。
http://rogeralsing.com/2008/12 /07/Genetic-programming-evolution-of-mona-lisa/

编辑:我喜欢这个例子的原因是因为它相当小且易于理解。 这是掌握遗传编程概念的一种快速而简单的方法。

Roger Alsing's Mona Lisa project is a quite good example.
http://rogeralsing.com/2008/12/07/genetic-programming-evolution-of-mona-lisa/

EDIT: The reason I like the example is because it rather small and easy to understand. Its a quick and easy way to grasp the concept of genetic programming.

不可一世的女人 2024-07-31 08:24:53

您可以查看 适者生存:Windows 窗体的自然选择

编辑:请参阅我刚刚发现的上一个问题。 这几乎是重复的。 抱歉,您不明白该链接(最好在问题中提及这些内容)。 此外,即使答案已被接受,另一个问题仍然有待更多答案/编辑。

You could look at Survival of the Fittest: Natural Selection with Windows Forms.

EDIT: See this previous SO question, which I just found. It's pretty much a duplicate. Sorry you don't understand the link (it's good to mention such things in the question). Also, the other question is still open for more answers/edits, even though an answer has been accepted.

我是男神闪亮亮 2024-07-31 08:24:53

您可以尝试 Sean Luke 的 ECJ(Java 中的进化计算)的 C# .NET 4.0 端口:

http://branecloud.codeplex.com

这是一个非常灵活且功能强大的软件! 但它也相对容易上手,因为它包含许多开箱即用的工作控制台示例(以及在转换过程中开发的许多有用的单元测试)。

You can try this C# .NET 4.0 port of Sean Luke's ECJ (Evolutionary Computation in Java):

http://branecloud.codeplex.com

It is very flexible and powerful software! But it is also relatively easy to get started because it includes many working console samples out-of-the-box (and many helpful unit tests that were developed during the conversion).

Ben

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文