简单的 3x3 矩阵逆码 (C++)

发布于 2024-07-23 23:40:23 字数 114 浏览 8 评论 0原文

计算 3x3 矩阵逆的最简单方法是什么?

我只是在寻找一个简短的代码片段,可以使用克莱默规则来解决非奇异矩阵的问题。 它不需要高度优化。 我更喜欢简单而不是速度。 我不想链接其他库。

What's the easiest way to compute a 3x3 matrix inverse?

I'm just looking for a short code snippet that'll do the trick for non-singular matrices, possibly using Cramer's rule. It doesn't need to be highly optimized. I'd prefer simplicity over speed. I'd rather not link in additional libraries.

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(12

蓦然回首 2024-07-30 23:40:23
# include <conio.h>
# include<iostream.h>

const int size = 9;

int main()
{
    char ch;

    do
    {
        clrscr();
        int i, j, x, y, z, det, a[size], b[size];

        cout << "           **** MATRIX OF 3x3 ORDER ****"
             << endl
             << endl
             << endl;

        for (i = 0; i <= size; i++)
            a[i]=0;

        for (i = 0; i < size; i++)
        {
            cout << "Enter "
                 << i + 1
                 << " element of matrix=";

            cin >> a[i]; 

            cout << endl
                 <<endl;
        }

        clrscr();

        cout << "your entered matrix is "
             << endl
             <<endl;

        for (i = 0; i < size; i += 3)
            cout << a[i]
                 << "  "
                 << a[i+1]
                 << "  "
                 << a[i+2]
                 << endl
                 <<endl;

        cout << "Transpose of given matrix is"
             << endl
             << endl;

        for (i = 0; i < 3; i++)
            cout << a[i]
                 << "  "
                 << a[i+3]
                 << "  "
                 << a[i+6]
                 << endl
                 << endl;

        cout << "Determinent of given matrix is = ";

        x = a[0] * (a[4] * a[8] -a [5] * a[7]);
        y = a[1] * (a[3] * a[8] -a [5] * a[6]);
        z = a[2] * (a[3] * a[7] -a [4] * a[6]);
        det = x - y + z;

        cout << det 
             << endl
             << endl
             << endl
             << endl;

        if (det == 0)
        {
            cout << "As Determinent=0 so it is singular matrix and its inverse cannot exist"
                 << endl
                 << endl;

            goto quit;
        }

        b[0] = a[4] * a[8] - a[5] * a[7];
        b[1] = a[5] * a[6] - a[3] * a[8];
        b[2] = a[3] * a[7] - a[4] * a[6];
        b[3] = a[2] * a[7] - a[1] * a[8];
        b[4] = a[0] * a[8] - a[2] * a[6];
        b[5] = a[1] * a[6] - a[0] * a[7];
        b[6] = a[1] * a[5] - a[2] * a[4];
        b[7] = a[2] * a[3] - a[0] * a[5];
        b[8] = a[0] * a[4] - a[1] * a[3];

        cout << "Adjoint of given matrix is"
             << endl
             << endl;

        for (i = 0; i < 3; i++)
        {
            cout << b[i]
                 << "  "
                 << b[i+3]
                 << "  "
                 << b[i+6]
                 << endl
                 <<endl;
        }

        cout << endl
             <<endl;

        cout << "Inverse of given matrix is "
             << endl
             << endl
             << endl;

        for (i = 0; i < 3; i++)
        {
            cout << b[i]
                 << "/"
                 << det
                 << "  "
                 << b[i+3]
                 << "/" 
                 << det
                 << "  "
                 << b[i+6]
                 << "/" 
                 << det
                 << endl
                  <<endl;
        }

        quit:

        cout << endl
             << endl;

        cout << "Do You want to continue this again press (y/yes,n/no)";

        cin >> ch; 

        cout << endl
             << endl;
    } /* end do */

    while (ch == 'y');
    getch ();

    return 0;
}
# include <conio.h>
# include<iostream.h>

const int size = 9;

int main()
{
    char ch;

    do
    {
        clrscr();
        int i, j, x, y, z, det, a[size], b[size];

        cout << "           **** MATRIX OF 3x3 ORDER ****"
             << endl
             << endl
             << endl;

        for (i = 0; i <= size; i++)
            a[i]=0;

        for (i = 0; i < size; i++)
        {
            cout << "Enter "
                 << i + 1
                 << " element of matrix=";

            cin >> a[i]; 

            cout << endl
                 <<endl;
        }

        clrscr();

        cout << "your entered matrix is "
             << endl
             <<endl;

        for (i = 0; i < size; i += 3)
            cout << a[i]
                 << "  "
                 << a[i+1]
                 << "  "
                 << a[i+2]
                 << endl
                 <<endl;

        cout << "Transpose of given matrix is"
             << endl
             << endl;

        for (i = 0; i < 3; i++)
            cout << a[i]
                 << "  "
                 << a[i+3]
                 << "  "
                 << a[i+6]
                 << endl
                 << endl;

        cout << "Determinent of given matrix is = ";

        x = a[0] * (a[4] * a[8] -a [5] * a[7]);
        y = a[1] * (a[3] * a[8] -a [5] * a[6]);
        z = a[2] * (a[3] * a[7] -a [4] * a[6]);
        det = x - y + z;

        cout << det 
             << endl
             << endl
             << endl
             << endl;

        if (det == 0)
        {
            cout << "As Determinent=0 so it is singular matrix and its inverse cannot exist"
                 << endl
                 << endl;

            goto quit;
        }

        b[0] = a[4] * a[8] - a[5] * a[7];
        b[1] = a[5] * a[6] - a[3] * a[8];
        b[2] = a[3] * a[7] - a[4] * a[6];
        b[3] = a[2] * a[7] - a[1] * a[8];
        b[4] = a[0] * a[8] - a[2] * a[6];
        b[5] = a[1] * a[6] - a[0] * a[7];
        b[6] = a[1] * a[5] - a[2] * a[4];
        b[7] = a[2] * a[3] - a[0] * a[5];
        b[8] = a[0] * a[4] - a[1] * a[3];

        cout << "Adjoint of given matrix is"
             << endl
             << endl;

        for (i = 0; i < 3; i++)
        {
            cout << b[i]
                 << "  "
                 << b[i+3]
                 << "  "
                 << b[i+6]
                 << endl
                 <<endl;
        }

        cout << endl
             <<endl;

        cout << "Inverse of given matrix is "
             << endl
             << endl
             << endl;

        for (i = 0; i < 3; i++)
        {
            cout << b[i]
                 << "/"
                 << det
                 << "  "
                 << b[i+3]
                 << "/" 
                 << det
                 << "  "
                 << b[i+6]
                 << "/" 
                 << det
                 << endl
                  <<endl;
        }

        quit:

        cout << endl
             << endl;

        cout << "Do You want to continue this again press (y/yes,n/no)";

        cin >> ch; 

        cout << endl
             << endl;
    } /* end do */

    while (ch == 'y');
    getch ();

    return 0;
}
红尘作伴 2024-07-30 23:40:23

我还推荐 Ilmbase,它是 OpenEXR 的一部分。 这是一组很好的模板化 2,3,4 向量和矩阵例程。

I would also recommend Ilmbase, which is part of OpenEXR. It's a good set of templated 2,3,4-vector and matrix routines.

沉默的熊 2024-07-30 23:40:23

大多数 OpenGL 工具包都提供了一个相当不错的(我认为)头文件,其中包含大多数 2x2、3x3 和 4x4 矩阵运算的宏。 不是标准的,但我在不同的地方见过它。

你可以在这里查看。 最后你会发现 2x2、3x3 和 4x4 的逆。

vvector.h

A rather nice (I think) header file containing macros for most 2x2, 3x3 and 4x4 matrix operations has been available with most OpenGL toolkits. Not as standard but I've seen it at various places.

You can check it out here. At the end of it you will find both inverse of 2x2, 3x3 and 4x4.

vvector.h

我纯我任性 2024-07-30 23:40:23
#include <iostream>
using namespace std;

int main()
{
    double A11, A12, A13;
    double A21, A22, A23;
    double A31, A32, A33;

    double B11, B12, B13;
    double B21, B22, B23;
    double B31, B32, B33;

    cout << "Enter all number from left to right, from top to bottom, and press enter after every number: ";
    cin  >> A11;
    cin  >> A12;
    cin  >> A13;
    cin  >> A21;
    cin  >> A22;
    cin  >> A23;
    cin  >> A31;
    cin  >> A32;
    cin  >> A33;

    B11 = 1 / ((A22 * A33) - (A23 * A32));
    B12 = 1 / ((A13 * A32) - (A12 * A33));
    B13 = 1 / ((A12 * A23) - (A13 * A22));
    B21 = 1 / ((A23 * A31) - (A21 * A33));
    B22 = 1 / ((A11 * A33) - (A13 * A31));
    B23 = 1 / ((A13 * A21) - (A11 * A23));
    B31 = 1 / ((A21 * A32) - (A22 * A31));
    B32 = 1 / ((A12 * A31) - (A11 * A32));
    B33 = 1 / ((A11 * A22) - (A12 * A21));

    cout << B11 << "\t" << B12 << "\t" << B13 << endl;
    cout << B21 << "\t" << B22 << "\t" << B23 << endl;
    cout << B31 << "\t" << B32 << "\t" << B33 << endl;

    return 0;
}
#include <iostream>
using namespace std;

int main()
{
    double A11, A12, A13;
    double A21, A22, A23;
    double A31, A32, A33;

    double B11, B12, B13;
    double B21, B22, B23;
    double B31, B32, B33;

    cout << "Enter all number from left to right, from top to bottom, and press enter after every number: ";
    cin  >> A11;
    cin  >> A12;
    cin  >> A13;
    cin  >> A21;
    cin  >> A22;
    cin  >> A23;
    cin  >> A31;
    cin  >> A32;
    cin  >> A33;

    B11 = 1 / ((A22 * A33) - (A23 * A32));
    B12 = 1 / ((A13 * A32) - (A12 * A33));
    B13 = 1 / ((A12 * A23) - (A13 * A22));
    B21 = 1 / ((A23 * A31) - (A21 * A33));
    B22 = 1 / ((A11 * A33) - (A13 * A31));
    B23 = 1 / ((A13 * A21) - (A11 * A23));
    B31 = 1 / ((A21 * A32) - (A22 * A31));
    B32 = 1 / ((A12 * A31) - (A11 * A32));
    B33 = 1 / ((A11 * A22) - (A12 * A21));

    cout << B11 << "\t" << B12 << "\t" << B13 << endl;
    cout << B21 << "\t" << B22 << "\t" << B23 << endl;
    cout << B31 << "\t" << B32 << "\t" << B33 << endl;

    return 0;
}
_失温 2024-07-30 23:40:23
//Title: Matrix Header File
//Writer: Say OL
//This is a beginner code not an expert one
//No responsibilty for any errors
//Use for your own risk
using namespace std;
int row,col,Row,Col;
double Coefficient;
//Input Matrix
void Input(double Matrix[9][9],int Row,int Col)
{
    for(row=1;row<=Row;row++)
        for(col=1;col<=Col;col++)
        {
            cout<<"e["<<row<<"]["<<col<<"]=";
            cin>>Matrix[row][col];
        }
}
//Output Matrix
void Output(double Matrix[9][9],int Row,int Col)
{
    for(row=1;row<=Row;row++)
    {
        for(col=1;col<=Col;col++)
            cout<<Matrix[row][col]<<"\t";
        cout<<endl;
    }
}
//Copy Pointer to Matrix
void CopyPointer(double (*Pointer)[9],double Matrix[9][9],int Row,int Col)
{
    for(row=1;row<=Row;row++)
        for(col=1;col<=Col;col++)
            Matrix[row][col]=Pointer[row][col];
}
//Copy Matrix to Matrix
void CopyMatrix(double MatrixInput[9][9],double MatrixTarget[9][9],int Row,int Col)
{
    for(row=1;row<=Row;row++)
        for(col=1;col<=Col;col++)
            MatrixTarget[row][col]=MatrixInput[row][col];
}
//Transpose of Matrix
double MatrixTran[9][9];
double (*(Transpose)(double MatrixInput[9][9],int Row,int Col))[9]
{
    for(row=1;row<=Row;row++)
        for(col=1;col<=Col;col++)
            MatrixTran[col][row]=MatrixInput[row][col];
    return MatrixTran;
}
//Matrix Addition
double MatrixAdd[9][9];
double (*(Addition)(double MatrixA[9][9],double MatrixB[9][9],int Row,int Col))[9]
{
    for(row=1;row<=Row;row++)
        for(col=1;col<=Col;col++)
            MatrixAdd[row][col]=MatrixA[row][col]+MatrixB[row][col];
    return MatrixAdd;
}
//Matrix Subtraction
double MatrixSub[9][9];
double (*(Subtraction)(double MatrixA[9][9],double MatrixB[9][9],int Row,int Col))[9]
{
    for(row=1;row<=Row;row++)
        for(col=1;col<=Col;col++)
            MatrixSub[row][col]=MatrixA[row][col]-MatrixB[row][col];
    return MatrixSub;
}
//Matrix Multiplication
int mRow,nCol,pCol,kcol;
double MatrixMult[9][9];
double (*(Multiplication)(double MatrixA[9][9],double MatrixB[9][9],int mRow,int nCol,int pCol))[9]
{
    for(row=1;row<=mRow;row++)
        for(col=1;col<=pCol;col++)
        {
            MatrixMult[row][col]=0.0;
            for(kcol=1;kcol<=nCol;kcol++)
                MatrixMult[row][col]+=MatrixA[row][kcol]*MatrixB[kcol][col];
        }
    return MatrixMult;
}
//Interchange Two Rows
double RowTemp[9][9];
double MatrixInter[9][9];
double (*(InterchangeRow)(double MatrixInput[9][9],int Row,int Col,int iRow,int jRow))[9]
{
    CopyMatrix(MatrixInput,MatrixInter,Row,Col);
    for(col=1;col<=Col;col++)
    {
        RowTemp[iRow][col]=MatrixInter[iRow][col];
        MatrixInter[iRow][col]=MatrixInter[jRow][col];
        MatrixInter[jRow][col]=RowTemp[iRow][col];
    }
    return MatrixInter;
}
//Pivote Downward
double MatrixDown[9][9];
double (*(PivoteDown)(double MatrixInput[9][9],int Row,int Col,int tRow,int tCol))[9]
{
    CopyMatrix(MatrixInput,MatrixDown,Row,Col);
    Coefficient=MatrixDown[tRow][tCol];
    if(Coefficient!=1.0)
        for(col=1;col<=Col;col++)
            MatrixDown[tRow][col]/=Coefficient;
    if(tRow<Row)
        for(row=tRow+1;row<=Row;row++)
        {
            Coefficient=MatrixDown[row][tCol];
            for(col=1;col<=Col;col++)
                MatrixDown[row][col]-=Coefficient*MatrixDown[tRow][col];
        }
return MatrixDown;
}
//Pivote Upward
double MatrixUp[9][9];
double (*(PivoteUp)(double MatrixInput[9][9],int Row,int Col,int tRow,int tCol))[9]
{
    CopyMatrix(MatrixInput,MatrixUp,Row,Col);
    Coefficient=MatrixUp[tRow][tCol];
    if(Coefficient!=1.0)
        for(col=1;col<=Col;col++)
            MatrixUp[tRow][col]/=Coefficient;
    if(tRow>1)
        for(row=tRow-1;row>=1;row--)
        {
            Coefficient=MatrixUp[row][tCol];
            for(col=1;col<=Col;col++)
                MatrixUp[row][col]-=Coefficient*MatrixUp[tRow][col];
        }
    return MatrixUp;
}
//Pivote in Determinant
double MatrixPiv[9][9];
double (*(Pivote)(double MatrixInput[9][9],int Dim,int pTarget))[9]
{
    CopyMatrix(MatrixInput,MatrixPiv,Dim,Dim);
    for(row=pTarget+1;row<=Dim;row++)
    {
        Coefficient=MatrixPiv[row][pTarget]/MatrixPiv[pTarget][pTarget];
        for(col=1;col<=Dim;col++)
        {
            MatrixPiv[row][col]-=Coefficient*MatrixPiv[pTarget][col];
        }
    }
    return MatrixPiv;
}
//Determinant of Square Matrix
int dCounter,dRow;
double Det;
double MatrixDet[9][9];
double Determinant(double MatrixInput[9][9],int Dim)
{
    CopyMatrix(MatrixInput,MatrixDet,Dim,Dim);
    Det=1.0;
    if(Dim>1)
    {
        for(dRow=1;dRow<Dim;dRow++)
        {
            dCounter=dRow;
            while((MatrixDet[dRow][dRow]==0.0)&(dCounter<=Dim))
            {
                dCounter++;
                Det*=-1.0;
                CopyPointer(InterchangeRow(MatrixDet,Dim,Dim,dRow,dCounter),MatrixDet,Dim,Dim);
            }
            if(MatrixDet[dRow][dRow]==0)
            {
                Det=0.0;
                break;
            }
            else
            {
                Det*=MatrixDet[dRow][dRow];
                CopyPointer(Pivote(MatrixDet,Dim,dRow),MatrixDet,Dim,Dim);
            }
        }
        Det*=MatrixDet[Dim][Dim];
    }
    else Det=MatrixDet[1][1];
    return Det;
}
//Matrix Identity
double MatrixIdent[9][9];
double (*(Identity)(int Dim))[9]
{
    for(row=1;row<=Dim;row++)
        for(col=1;col<=Dim;col++)
            if(row==col)
                MatrixIdent[row][col]=1.0;
            else
                MatrixIdent[row][col]=0.0;
    return MatrixIdent;
}
//Join Matrix to be Augmented Matrix
double MatrixJoin[9][9];
double (*(JoinMatrix)(double MatrixA[9][9],double MatrixB[9][9],int Row,int ColA,int ColB))[9]
{
    Col=ColA+ColB;
    for(row=1;row<=Row;row++)
        for(col=1;col<=Col;col++)
            if(col<=ColA)
                MatrixJoin[row][col]=MatrixA[row][col];
            else
                MatrixJoin[row][col]=MatrixB[row][col-ColA];
    return MatrixJoin;
}
//Inverse of Matrix
double (*Pointer)[9];
double IdentMatrix[9][9];
int Counter;
double MatrixAug[9][9];
double MatrixInv[9][9];
double (*(Inverse)(double MatrixInput[9][9],int Dim))[9]
{
    Row=Dim;
    Col=Dim+Dim;
    Pointer=Identity(Dim);
    CopyPointer(Pointer,IdentMatrix,Dim,Dim);
    Pointer=JoinMatrix(MatrixInput,IdentMatrix,Dim,Dim,Dim);
    CopyPointer(Pointer,MatrixAug,Row,Col);
    for(Counter=1;Counter<=Dim;Counter++)   
    {
        Pointer=PivoteDown(MatrixAug,Row,Col,Counter,Counter);
        CopyPointer(Pointer,MatrixAug,Row,Col);
    }
    for(Counter=Dim;Counter>1;Counter--)
    {
        Pointer=PivoteUp(MatrixAug,Row,Col,Counter,Counter);
        CopyPointer(Pointer,MatrixAug,Row,Col);
    }
    for(row=1;row<=Dim;row++)
        for(col=1;col<=Dim;col++)
            MatrixInv[row][col]=MatrixAug[row][col+Dim];
    return MatrixInv;
}
//Gauss-Jordan Elemination
double MatrixGJ[9][9];
double VectorGJ[9][9];
double (*(GaussJordan)(double MatrixInput[9][9],double VectorInput[9][9],int Dim))[9]
{
    Row=Dim;
    Col=Dim+1;
    Pointer=JoinMatrix(MatrixInput,VectorInput,Dim,Dim,1);
    CopyPointer(Pointer,MatrixGJ,Row,Col);
    for(Counter=1;Counter<=Dim;Counter++)   
    {
        Pointer=PivoteDown(MatrixGJ,Row,Col,Counter,Counter);
        CopyPointer(Pointer,MatrixGJ,Row,Col);
    }
    for(Counter=Dim;Counter>1;Counter--)
    {
        Pointer=PivoteUp(MatrixGJ,Row,Col,Counter,Counter);
        CopyPointer(Pointer,MatrixGJ,Row,Col);
    }
    for(row=1;row<=Dim;row++)
        for(col=1;col<=1;col++)
            VectorGJ[row][col]=MatrixGJ[row][col+Dim];
    return VectorGJ;
}
//Generalized Gauss-Jordan Elemination
double MatrixGGJ[9][9];
double VectorGGJ[9][9];
double (*(GeneralizedGaussJordan)(double MatrixInput[9][9],double VectorInput[9][9],int Dim,int vCol))[9]
{
    Row=Dim;
    Col=Dim+vCol;
    Pointer=JoinMatrix(MatrixInput,VectorInput,Dim,Dim,vCol);
    CopyPointer(Pointer,MatrixGGJ,Row,Col);
    for(Counter=1;Counter<=Dim;Counter++)   
    {
        Pointer=PivoteDown(MatrixGGJ,Row,Col,Counter,Counter);
        CopyPointer(Pointer,MatrixGGJ,Row,Col);
    }
    for(Counter=Dim;Counter>1;Counter--)
    {
        Pointer=PivoteUp(MatrixGGJ,Row,Col,Counter,Counter);
        CopyPointer(Pointer,MatrixGGJ,Row,Col);
    }
    for(row=1;row<=Row;row++)
        for(col=1;col<=vCol;col++)
            VectorGGJ[row][col]=MatrixGGJ[row][col+Dim];
    return VectorGGJ;
}
//Matrix Sparse, Three Diagonal Non-Zero Elements
double MatrixSpa[9][9];
double (*(Sparse)(int Dimension,double FirstElement,double SecondElement,double ThirdElement))[9]
{
    MatrixSpa[1][1]=SecondElement;
    MatrixSpa[1][2]=ThirdElement;
    MatrixSpa[Dimension][Dimension-1]=FirstElement;
    MatrixSpa[Dimension][Dimension]=SecondElement;
    for(int Counter=2;Counter<Dimension;Counter++)
    {
        MatrixSpa[Counter][Counter-1]=FirstElement;
        MatrixSpa[Counter][Counter]=SecondElement;
        MatrixSpa[Counter][Counter+1]=ThirdElement;
    }
    return MatrixSpa;
}

复制上述代码并将其保存为 Matrix.h,然后尝试以下代码:

#include<iostream>
#include<conio.h>
#include"Matrix.h"
int Dim;
double Matrix[9][9];
int main()
{
    cout<<"Enter your matrix dimension: ";
    cin>>Dim;
    Input(Matrix,Dim,Dim);
    cout<<"Your matrix:"<<endl;
    Output(Matrix,Dim,Dim);
    cout<<"The inverse:"<<endl;
    Output(Inverse(Matrix,Dim),Dim,Dim);
    getch();
}
//Title: Matrix Header File
//Writer: Say OL
//This is a beginner code not an expert one
//No responsibilty for any errors
//Use for your own risk
using namespace std;
int row,col,Row,Col;
double Coefficient;
//Input Matrix
void Input(double Matrix[9][9],int Row,int Col)
{
    for(row=1;row<=Row;row++)
        for(col=1;col<=Col;col++)
        {
            cout<<"e["<<row<<"]["<<col<<"]=";
            cin>>Matrix[row][col];
        }
}
//Output Matrix
void Output(double Matrix[9][9],int Row,int Col)
{
    for(row=1;row<=Row;row++)
    {
        for(col=1;col<=Col;col++)
            cout<<Matrix[row][col]<<"\t";
        cout<<endl;
    }
}
//Copy Pointer to Matrix
void CopyPointer(double (*Pointer)[9],double Matrix[9][9],int Row,int Col)
{
    for(row=1;row<=Row;row++)
        for(col=1;col<=Col;col++)
            Matrix[row][col]=Pointer[row][col];
}
//Copy Matrix to Matrix
void CopyMatrix(double MatrixInput[9][9],double MatrixTarget[9][9],int Row,int Col)
{
    for(row=1;row<=Row;row++)
        for(col=1;col<=Col;col++)
            MatrixTarget[row][col]=MatrixInput[row][col];
}
//Transpose of Matrix
double MatrixTran[9][9];
double (*(Transpose)(double MatrixInput[9][9],int Row,int Col))[9]
{
    for(row=1;row<=Row;row++)
        for(col=1;col<=Col;col++)
            MatrixTran[col][row]=MatrixInput[row][col];
    return MatrixTran;
}
//Matrix Addition
double MatrixAdd[9][9];
double (*(Addition)(double MatrixA[9][9],double MatrixB[9][9],int Row,int Col))[9]
{
    for(row=1;row<=Row;row++)
        for(col=1;col<=Col;col++)
            MatrixAdd[row][col]=MatrixA[row][col]+MatrixB[row][col];
    return MatrixAdd;
}
//Matrix Subtraction
double MatrixSub[9][9];
double (*(Subtraction)(double MatrixA[9][9],double MatrixB[9][9],int Row,int Col))[9]
{
    for(row=1;row<=Row;row++)
        for(col=1;col<=Col;col++)
            MatrixSub[row][col]=MatrixA[row][col]-MatrixB[row][col];
    return MatrixSub;
}
//Matrix Multiplication
int mRow,nCol,pCol,kcol;
double MatrixMult[9][9];
double (*(Multiplication)(double MatrixA[9][9],double MatrixB[9][9],int mRow,int nCol,int pCol))[9]
{
    for(row=1;row<=mRow;row++)
        for(col=1;col<=pCol;col++)
        {
            MatrixMult[row][col]=0.0;
            for(kcol=1;kcol<=nCol;kcol++)
                MatrixMult[row][col]+=MatrixA[row][kcol]*MatrixB[kcol][col];
        }
    return MatrixMult;
}
//Interchange Two Rows
double RowTemp[9][9];
double MatrixInter[9][9];
double (*(InterchangeRow)(double MatrixInput[9][9],int Row,int Col,int iRow,int jRow))[9]
{
    CopyMatrix(MatrixInput,MatrixInter,Row,Col);
    for(col=1;col<=Col;col++)
    {
        RowTemp[iRow][col]=MatrixInter[iRow][col];
        MatrixInter[iRow][col]=MatrixInter[jRow][col];
        MatrixInter[jRow][col]=RowTemp[iRow][col];
    }
    return MatrixInter;
}
//Pivote Downward
double MatrixDown[9][9];
double (*(PivoteDown)(double MatrixInput[9][9],int Row,int Col,int tRow,int tCol))[9]
{
    CopyMatrix(MatrixInput,MatrixDown,Row,Col);
    Coefficient=MatrixDown[tRow][tCol];
    if(Coefficient!=1.0)
        for(col=1;col<=Col;col++)
            MatrixDown[tRow][col]/=Coefficient;
    if(tRow<Row)
        for(row=tRow+1;row<=Row;row++)
        {
            Coefficient=MatrixDown[row][tCol];
            for(col=1;col<=Col;col++)
                MatrixDown[row][col]-=Coefficient*MatrixDown[tRow][col];
        }
return MatrixDown;
}
//Pivote Upward
double MatrixUp[9][9];
double (*(PivoteUp)(double MatrixInput[9][9],int Row,int Col,int tRow,int tCol))[9]
{
    CopyMatrix(MatrixInput,MatrixUp,Row,Col);
    Coefficient=MatrixUp[tRow][tCol];
    if(Coefficient!=1.0)
        for(col=1;col<=Col;col++)
            MatrixUp[tRow][col]/=Coefficient;
    if(tRow>1)
        for(row=tRow-1;row>=1;row--)
        {
            Coefficient=MatrixUp[row][tCol];
            for(col=1;col<=Col;col++)
                MatrixUp[row][col]-=Coefficient*MatrixUp[tRow][col];
        }
    return MatrixUp;
}
//Pivote in Determinant
double MatrixPiv[9][9];
double (*(Pivote)(double MatrixInput[9][9],int Dim,int pTarget))[9]
{
    CopyMatrix(MatrixInput,MatrixPiv,Dim,Dim);
    for(row=pTarget+1;row<=Dim;row++)
    {
        Coefficient=MatrixPiv[row][pTarget]/MatrixPiv[pTarget][pTarget];
        for(col=1;col<=Dim;col++)
        {
            MatrixPiv[row][col]-=Coefficient*MatrixPiv[pTarget][col];
        }
    }
    return MatrixPiv;
}
//Determinant of Square Matrix
int dCounter,dRow;
double Det;
double MatrixDet[9][9];
double Determinant(double MatrixInput[9][9],int Dim)
{
    CopyMatrix(MatrixInput,MatrixDet,Dim,Dim);
    Det=1.0;
    if(Dim>1)
    {
        for(dRow=1;dRow<Dim;dRow++)
        {
            dCounter=dRow;
            while((MatrixDet[dRow][dRow]==0.0)&(dCounter<=Dim))
            {
                dCounter++;
                Det*=-1.0;
                CopyPointer(InterchangeRow(MatrixDet,Dim,Dim,dRow,dCounter),MatrixDet,Dim,Dim);
            }
            if(MatrixDet[dRow][dRow]==0)
            {
                Det=0.0;
                break;
            }
            else
            {
                Det*=MatrixDet[dRow][dRow];
                CopyPointer(Pivote(MatrixDet,Dim,dRow),MatrixDet,Dim,Dim);
            }
        }
        Det*=MatrixDet[Dim][Dim];
    }
    else Det=MatrixDet[1][1];
    return Det;
}
//Matrix Identity
double MatrixIdent[9][9];
double (*(Identity)(int Dim))[9]
{
    for(row=1;row<=Dim;row++)
        for(col=1;col<=Dim;col++)
            if(row==col)
                MatrixIdent[row][col]=1.0;
            else
                MatrixIdent[row][col]=0.0;
    return MatrixIdent;
}
//Join Matrix to be Augmented Matrix
double MatrixJoin[9][9];
double (*(JoinMatrix)(double MatrixA[9][9],double MatrixB[9][9],int Row,int ColA,int ColB))[9]
{
    Col=ColA+ColB;
    for(row=1;row<=Row;row++)
        for(col=1;col<=Col;col++)
            if(col<=ColA)
                MatrixJoin[row][col]=MatrixA[row][col];
            else
                MatrixJoin[row][col]=MatrixB[row][col-ColA];
    return MatrixJoin;
}
//Inverse of Matrix
double (*Pointer)[9];
double IdentMatrix[9][9];
int Counter;
double MatrixAug[9][9];
double MatrixInv[9][9];
double (*(Inverse)(double MatrixInput[9][9],int Dim))[9]
{
    Row=Dim;
    Col=Dim+Dim;
    Pointer=Identity(Dim);
    CopyPointer(Pointer,IdentMatrix,Dim,Dim);
    Pointer=JoinMatrix(MatrixInput,IdentMatrix,Dim,Dim,Dim);
    CopyPointer(Pointer,MatrixAug,Row,Col);
    for(Counter=1;Counter<=Dim;Counter++)   
    {
        Pointer=PivoteDown(MatrixAug,Row,Col,Counter,Counter);
        CopyPointer(Pointer,MatrixAug,Row,Col);
    }
    for(Counter=Dim;Counter>1;Counter--)
    {
        Pointer=PivoteUp(MatrixAug,Row,Col,Counter,Counter);
        CopyPointer(Pointer,MatrixAug,Row,Col);
    }
    for(row=1;row<=Dim;row++)
        for(col=1;col<=Dim;col++)
            MatrixInv[row][col]=MatrixAug[row][col+Dim];
    return MatrixInv;
}
//Gauss-Jordan Elemination
double MatrixGJ[9][9];
double VectorGJ[9][9];
double (*(GaussJordan)(double MatrixInput[9][9],double VectorInput[9][9],int Dim))[9]
{
    Row=Dim;
    Col=Dim+1;
    Pointer=JoinMatrix(MatrixInput,VectorInput,Dim,Dim,1);
    CopyPointer(Pointer,MatrixGJ,Row,Col);
    for(Counter=1;Counter<=Dim;Counter++)   
    {
        Pointer=PivoteDown(MatrixGJ,Row,Col,Counter,Counter);
        CopyPointer(Pointer,MatrixGJ,Row,Col);
    }
    for(Counter=Dim;Counter>1;Counter--)
    {
        Pointer=PivoteUp(MatrixGJ,Row,Col,Counter,Counter);
        CopyPointer(Pointer,MatrixGJ,Row,Col);
    }
    for(row=1;row<=Dim;row++)
        for(col=1;col<=1;col++)
            VectorGJ[row][col]=MatrixGJ[row][col+Dim];
    return VectorGJ;
}
//Generalized Gauss-Jordan Elemination
double MatrixGGJ[9][9];
double VectorGGJ[9][9];
double (*(GeneralizedGaussJordan)(double MatrixInput[9][9],double VectorInput[9][9],int Dim,int vCol))[9]
{
    Row=Dim;
    Col=Dim+vCol;
    Pointer=JoinMatrix(MatrixInput,VectorInput,Dim,Dim,vCol);
    CopyPointer(Pointer,MatrixGGJ,Row,Col);
    for(Counter=1;Counter<=Dim;Counter++)   
    {
        Pointer=PivoteDown(MatrixGGJ,Row,Col,Counter,Counter);
        CopyPointer(Pointer,MatrixGGJ,Row,Col);
    }
    for(Counter=Dim;Counter>1;Counter--)
    {
        Pointer=PivoteUp(MatrixGGJ,Row,Col,Counter,Counter);
        CopyPointer(Pointer,MatrixGGJ,Row,Col);
    }
    for(row=1;row<=Row;row++)
        for(col=1;col<=vCol;col++)
            VectorGGJ[row][col]=MatrixGGJ[row][col+Dim];
    return VectorGGJ;
}
//Matrix Sparse, Three Diagonal Non-Zero Elements
double MatrixSpa[9][9];
double (*(Sparse)(int Dimension,double FirstElement,double SecondElement,double ThirdElement))[9]
{
    MatrixSpa[1][1]=SecondElement;
    MatrixSpa[1][2]=ThirdElement;
    MatrixSpa[Dimension][Dimension-1]=FirstElement;
    MatrixSpa[Dimension][Dimension]=SecondElement;
    for(int Counter=2;Counter<Dimension;Counter++)
    {
        MatrixSpa[Counter][Counter-1]=FirstElement;
        MatrixSpa[Counter][Counter]=SecondElement;
        MatrixSpa[Counter][Counter+1]=ThirdElement;
    }
    return MatrixSpa;
}

Copy and save the above code as Matrix.h then try the following code:

#include<iostream>
#include<conio.h>
#include"Matrix.h"
int Dim;
double Matrix[9][9];
int main()
{
    cout<<"Enter your matrix dimension: ";
    cin>>Dim;
    Input(Matrix,Dim,Dim);
    cout<<"Your matrix:"<<endl;
    Output(Matrix,Dim,Dim);
    cout<<"The inverse:"<<endl;
    Output(Inverse(Matrix,Dim),Dim,Dim);
    getch();
}
﹏半生如梦愿梦如真 2024-07-30 23:40:23

这是巴蒂答案的一个版本,但这计算出正确的逆。 batty 的版本计算逆矩阵的转置。

// computes the inverse of a matrix m
double det = m(0, 0) * (m(1, 1) * m(2, 2) - m(2, 1) * m(1, 2)) -
             m(0, 1) * (m(1, 0) * m(2, 2) - m(1, 2) * m(2, 0)) +
             m(0, 2) * (m(1, 0) * m(2, 1) - m(1, 1) * m(2, 0));

double invdet = 1 / det;

Matrix33d minv; // inverse of matrix m
minv(0, 0) = (m(1, 1) * m(2, 2) - m(2, 1) * m(1, 2)) * invdet;
minv(0, 1) = (m(0, 2) * m(2, 1) - m(0, 1) * m(2, 2)) * invdet;
minv(0, 2) = (m(0, 1) * m(1, 2) - m(0, 2) * m(1, 1)) * invdet;
minv(1, 0) = (m(1, 2) * m(2, 0) - m(1, 0) * m(2, 2)) * invdet;
minv(1, 1) = (m(0, 0) * m(2, 2) - m(0, 2) * m(2, 0)) * invdet;
minv(1, 2) = (m(1, 0) * m(0, 2) - m(0, 0) * m(1, 2)) * invdet;
minv(2, 0) = (m(1, 0) * m(2, 1) - m(2, 0) * m(1, 1)) * invdet;
minv(2, 1) = (m(2, 0) * m(0, 1) - m(0, 0) * m(2, 1)) * invdet;
minv(2, 2) = (m(0, 0) * m(1, 1) - m(1, 0) * m(0, 1)) * invdet;

Here's a version of batty's answer, but this computes the correct inverse. batty's version computes the transpose of the inverse.

// computes the inverse of a matrix m
double det = m(0, 0) * (m(1, 1) * m(2, 2) - m(2, 1) * m(1, 2)) -
             m(0, 1) * (m(1, 0) * m(2, 2) - m(1, 2) * m(2, 0)) +
             m(0, 2) * (m(1, 0) * m(2, 1) - m(1, 1) * m(2, 0));

double invdet = 1 / det;

Matrix33d minv; // inverse of matrix m
minv(0, 0) = (m(1, 1) * m(2, 2) - m(2, 1) * m(1, 2)) * invdet;
minv(0, 1) = (m(0, 2) * m(2, 1) - m(0, 1) * m(2, 2)) * invdet;
minv(0, 2) = (m(0, 1) * m(1, 2) - m(0, 2) * m(1, 1)) * invdet;
minv(1, 0) = (m(1, 2) * m(2, 0) - m(1, 0) * m(2, 2)) * invdet;
minv(1, 1) = (m(0, 0) * m(2, 2) - m(0, 2) * m(2, 0)) * invdet;
minv(1, 2) = (m(1, 0) * m(0, 2) - m(0, 0) * m(1, 2)) * invdet;
minv(2, 0) = (m(1, 0) * m(2, 1) - m(2, 0) * m(1, 1)) * invdet;
minv(2, 1) = (m(2, 0) * m(0, 1) - m(0, 0) * m(2, 1)) * invdet;
minv(2, 2) = (m(0, 0) * m(1, 1) - m(1, 0) * m(0, 1)) * invdet;
行雁书 2024-07-30 23:40:23

恕我直言,我对我们未知的(雅虎)发布者表示敬意,我看着这样的代码,心里有点死了。 字母汤实在是太难调试了。 任何地方的一个拼写错误都会毁掉你的一整天。 遗憾的是,这个特定的示例缺少带下划线的变量。 当我们有 a_b-c_d*e_f-g_h 时,会更有趣。 特别是当使用 _ 和 - 具有相同像素长度的字体时。

根据 Suvesh Pratapa 的建议,我注意到:

Given 3x3 matrix:
       y0x0  y0x1  y0x2
       y1x0  y1x1  y1x2
       y2x0  y2x1  y2x2
Declared as double matrix [/*Y=*/3] [/*X=*/3];

(A) 当取 3x3 数组的次要值时,我们有 4 个感兴趣的值。 较低的 X/Y 索引始终为 0 或 1。较高的 X/Y 索引始终为 1 或 2。始终! 因此:

double determinantOfMinor( int          theRowHeightY,
                           int          theColumnWidthX,
                           const double theMatrix [/*Y=*/3] [/*X=*/3] )
{
  int x1 = theColumnWidthX == 0 ? 1 : 0;  /* always either 0 or 1 */
  int x2 = theColumnWidthX == 2 ? 1 : 2;  /* always either 1 or 2 */
  int y1 = theRowHeightY   == 0 ? 1 : 0;  /* always either 0 or 1 */
  int y2 = theRowHeightY   == 2 ? 1 : 2;  /* always either 1 or 2 */

  return ( theMatrix [y1] [x1]  *  theMatrix [y2] [x2] )
      -  ( theMatrix [y1] [x2]  *  theMatrix [y2] [x1] );
}

(B) 行列式现在是:(注意减号!)

double determinant( const double theMatrix [/*Y=*/3] [/*X=*/3] )
{
  return ( theMatrix [0] [0]  *  determinantOfMinor( 0, 0, theMatrix ) )
      -  ( theMatrix [0] [1]  *  determinantOfMinor( 0, 1, theMatrix ) )
      +  ( theMatrix [0] [2]  *  determinantOfMinor( 0, 2, theMatrix ) );
}

(C) 倒数现在是:

bool inverse( const double theMatrix [/*Y=*/3] [/*X=*/3],
                    double theOutput [/*Y=*/3] [/*X=*/3] )
{
  double det = determinant( theMatrix );

    /* Arbitrary for now.  This should be something nicer... */
  if ( ABS(det) < 1e-2 )
  {
    memset( theOutput, 0, sizeof theOutput );
    return false;
  }

  double oneOverDeterminant = 1.0 / det;

  for (   int y = 0;  y < 3;  y ++ )
    for ( int x = 0;  x < 3;  x ++   )
    {
        /* Rule is inverse = 1/det * minor of the TRANSPOSE matrix.  *
         * Note (y,x) becomes (x,y) INTENTIONALLY here!              */
      theOutput [y] [x]
        = determinantOfMinor( x, y, theMatrix ) * oneOverDeterminant;

        /* (y0,x1)  (y1,x0)  (y1,x2)  and (y2,x1)  all need to be negated. */
      if( 1 == ((x + y) % 2) )
        theOutput [y] [x] = - theOutput [y] [x];
    }

  return true;
}

用一些质量较低的测试代码将其四舍五入:

void printMatrix( const double theMatrix [/*Y=*/3] [/*X=*/3] )
{
  for ( int y = 0;  y < 3;  y ++ )
  {
    cout << "[  ";
    for ( int x = 0;  x < 3;  x ++   )
      cout << theMatrix [y] [x] << "  ";
    cout << "]" << endl;
  }
  cout << endl;
}

void matrixMultiply(  const double theMatrixA [/*Y=*/3] [/*X=*/3],
                      const double theMatrixB [/*Y=*/3] [/*X=*/3],
                            double theOutput  [/*Y=*/3] [/*X=*/3]  )
{
  for (   int y = 0;  y < 3;  y ++ )
    for ( int x = 0;  x < 3;  x ++   )
    {
      theOutput [y] [x] = 0;
      for ( int i = 0;  i < 3;  i ++ )
        theOutput [y] [x] +=  theMatrixA [y] [i] * theMatrixB [i] [x];
    }
}

int
main(int argc, char **argv)
{
  if ( argc > 1 )
    SRANDOM( atoi( argv[1] ) );

  double m[3][3] = { { RANDOM_D(0,1e3), RANDOM_D(0,1e3), RANDOM_D(0,1e3) },
                     { RANDOM_D(0,1e3), RANDOM_D(0,1e3), RANDOM_D(0,1e3) },
                     { RANDOM_D(0,1e3), RANDOM_D(0,1e3), RANDOM_D(0,1e3) } };
  double o[3][3], mm[3][3];

  if ( argc <= 2 )
    cout << fixed << setprecision(3);

  printMatrix(m);
  cout << endl << endl;

  SHOW( determinant(m) );
  cout << endl << endl;

  BOUT( inverse(m, o) );
  printMatrix(m);
  printMatrix(o);
  cout << endl << endl;

  matrixMultiply (m, o, mm );
  printMatrix(m);
  printMatrix(o);
  printMatrix(mm);  
  cout << endl << endl;
}

事后思考:

您可能还想检测非常大的行列式四舍五入误差会影响您的准确性!

With all due respect to our unknown (yahoo) poster, I look at code like that and just die a little inside. Alphabet soup is just so insanely difficult to debug. A single typo anywhere in there can really ruin your whole day. Sadly, this particular example lacked variables with underscores. It's so much more fun when we have a_b-c_d*e_f-g_h. Especially when using a font where _ and - have the same pixel length.

Taking up Suvesh Pratapa on his suggestion, I note:

Given 3x3 matrix:
       y0x0  y0x1  y0x2
       y1x0  y1x1  y1x2
       y2x0  y2x1  y2x2
Declared as double matrix [/*Y=*/3] [/*X=*/3];

(A) When taking a minor of a 3x3 array, we have 4 values of interest. The lower X/Y index is always 0 or 1. The higher X/Y index is always 1 or 2. Always! Therefore:

double determinantOfMinor( int          theRowHeightY,
                           int          theColumnWidthX,
                           const double theMatrix [/*Y=*/3] [/*X=*/3] )
{
  int x1 = theColumnWidthX == 0 ? 1 : 0;  /* always either 0 or 1 */
  int x2 = theColumnWidthX == 2 ? 1 : 2;  /* always either 1 or 2 */
  int y1 = theRowHeightY   == 0 ? 1 : 0;  /* always either 0 or 1 */
  int y2 = theRowHeightY   == 2 ? 1 : 2;  /* always either 1 or 2 */

  return ( theMatrix [y1] [x1]  *  theMatrix [y2] [x2] )
      -  ( theMatrix [y1] [x2]  *  theMatrix [y2] [x1] );
}

(B) Determinant is now: (Note the minus sign!)

double determinant( const double theMatrix [/*Y=*/3] [/*X=*/3] )
{
  return ( theMatrix [0] [0]  *  determinantOfMinor( 0, 0, theMatrix ) )
      -  ( theMatrix [0] [1]  *  determinantOfMinor( 0, 1, theMatrix ) )
      +  ( theMatrix [0] [2]  *  determinantOfMinor( 0, 2, theMatrix ) );
}

(C) And the inverse is now:

bool inverse( const double theMatrix [/*Y=*/3] [/*X=*/3],
                    double theOutput [/*Y=*/3] [/*X=*/3] )
{
  double det = determinant( theMatrix );

    /* Arbitrary for now.  This should be something nicer... */
  if ( ABS(det) < 1e-2 )
  {
    memset( theOutput, 0, sizeof theOutput );
    return false;
  }

  double oneOverDeterminant = 1.0 / det;

  for (   int y = 0;  y < 3;  y ++ )
    for ( int x = 0;  x < 3;  x ++   )
    {
        /* Rule is inverse = 1/det * minor of the TRANSPOSE matrix.  *
         * Note (y,x) becomes (x,y) INTENTIONALLY here!              */
      theOutput [y] [x]
        = determinantOfMinor( x, y, theMatrix ) * oneOverDeterminant;

        /* (y0,x1)  (y1,x0)  (y1,x2)  and (y2,x1)  all need to be negated. */
      if( 1 == ((x + y) % 2) )
        theOutput [y] [x] = - theOutput [y] [x];
    }

  return true;
}

And round it out with a little lower-quality testing code:

void printMatrix( const double theMatrix [/*Y=*/3] [/*X=*/3] )
{
  for ( int y = 0;  y < 3;  y ++ )
  {
    cout << "[  ";
    for ( int x = 0;  x < 3;  x ++   )
      cout << theMatrix [y] [x] << "  ";
    cout << "]" << endl;
  }
  cout << endl;
}

void matrixMultiply(  const double theMatrixA [/*Y=*/3] [/*X=*/3],
                      const double theMatrixB [/*Y=*/3] [/*X=*/3],
                            double theOutput  [/*Y=*/3] [/*X=*/3]  )
{
  for (   int y = 0;  y < 3;  y ++ )
    for ( int x = 0;  x < 3;  x ++   )
    {
      theOutput [y] [x] = 0;
      for ( int i = 0;  i < 3;  i ++ )
        theOutput [y] [x] +=  theMatrixA [y] [i] * theMatrixB [i] [x];
    }
}

int
main(int argc, char **argv)
{
  if ( argc > 1 )
    SRANDOM( atoi( argv[1] ) );

  double m[3][3] = { { RANDOM_D(0,1e3), RANDOM_D(0,1e3), RANDOM_D(0,1e3) },
                     { RANDOM_D(0,1e3), RANDOM_D(0,1e3), RANDOM_D(0,1e3) },
                     { RANDOM_D(0,1e3), RANDOM_D(0,1e3), RANDOM_D(0,1e3) } };
  double o[3][3], mm[3][3];

  if ( argc <= 2 )
    cout << fixed << setprecision(3);

  printMatrix(m);
  cout << endl << endl;

  SHOW( determinant(m) );
  cout << endl << endl;

  BOUT( inverse(m, o) );
  printMatrix(m);
  printMatrix(o);
  cout << endl << endl;

  matrixMultiply (m, o, mm );
  printMatrix(m);
  printMatrix(o);
  printMatrix(mm);  
  cout << endl << endl;
}

Afterthought:

You may also want to detect very large determinants as round-off errors will affect your accuracy!

提笔落墨 2024-07-30 23:40:23

你为什么不尝试自己编码呢? 把它当作一个挑战。 :)

对于 3×3 矩阵

替代文本
(来源:wolfram.com

矩阵的逆矩阵是

替代文本
(来源:wolfram.com

我假设您知道矩阵 |A| 的行列式是什么 是。

图像 (c) Wolfram|Alpha
mathworld.wolfram (06-11-09,
22.06)

Why don't you try to code it yourself? Take it as a challenge. :)

For a 3×3 matrix

alt text
(source: wolfram.com)

the matrix inverse is

alt text
(source: wolfram.com)

I'm assuming you know what the determinant of a matrix |A| is.

Images (c) Wolfram|Alpha and
mathworld.wolfram (06-11-09,
22.06)

月下凄凉 2024-07-30 23:40:23

这段代码计算矩阵 A 的转置逆矩阵 A:

double determinant =    +A(0,0)*(A(1,1)*A(2,2)-A(2,1)*A(1,2))
                        -A(0,1)*(A(1,0)*A(2,2)-A(1,2)*A(2,0))
                        +A(0,2)*(A(1,0)*A(2,1)-A(1,1)*A(2,0));
double invdet = 1/determinant;
result(0,0) =  (A(1,1)*A(2,2)-A(2,1)*A(1,2))*invdet;
result(1,0) = -(A(0,1)*A(2,2)-A(0,2)*A(2,1))*invdet;
result(2,0) =  (A(0,1)*A(1,2)-A(0,2)*A(1,1))*invdet;
result(0,1) = -(A(1,0)*A(2,2)-A(1,2)*A(2,0))*invdet;
result(1,1) =  (A(0,0)*A(2,2)-A(0,2)*A(2,0))*invdet;
result(2,1) = -(A(0,0)*A(1,2)-A(1,0)*A(0,2))*invdet;
result(0,2) =  (A(1,0)*A(2,1)-A(2,0)*A(1,1))*invdet;
result(1,2) = -(A(0,0)*A(2,1)-A(2,0)*A(0,1))*invdet;
result(2,2) =  (A(0,0)*A(1,1)-A(1,0)*A(0,1))*invdet;

虽然问题规定了非奇异矩阵,但您可能仍然想检查行列式是否等于零(或非常接近零)并将其标记为某些确保安全的方法。

This piece of code computes the transposed inverse of the matrix A:

double determinant =    +A(0,0)*(A(1,1)*A(2,2)-A(2,1)*A(1,2))
                        -A(0,1)*(A(1,0)*A(2,2)-A(1,2)*A(2,0))
                        +A(0,2)*(A(1,0)*A(2,1)-A(1,1)*A(2,0));
double invdet = 1/determinant;
result(0,0) =  (A(1,1)*A(2,2)-A(2,1)*A(1,2))*invdet;
result(1,0) = -(A(0,1)*A(2,2)-A(0,2)*A(2,1))*invdet;
result(2,0) =  (A(0,1)*A(1,2)-A(0,2)*A(1,1))*invdet;
result(0,1) = -(A(1,0)*A(2,2)-A(1,2)*A(2,0))*invdet;
result(1,1) =  (A(0,0)*A(2,2)-A(0,2)*A(2,0))*invdet;
result(2,1) = -(A(0,0)*A(1,2)-A(1,0)*A(0,2))*invdet;
result(0,2) =  (A(1,0)*A(2,1)-A(2,0)*A(1,1))*invdet;
result(1,2) = -(A(0,0)*A(2,1)-A(2,0)*A(0,1))*invdet;
result(2,2) =  (A(0,0)*A(1,1)-A(1,0)*A(0,1))*invdet;

Though the question stipulated non-singular matrices, you might still want to check if determinant equals zero (or very near zero) and flag it in some way to be safe.

指尖凝香 2024-07-30 23:40:23

如果您真的想正确处理边缘情况,请不要尝试自己这样做。 因此,虽然许多朴素/简单的方法在理论上是精确的,但对于近乎奇异的矩阵,它们可能会产生令人讨厌的数值行为。 特别是,您可能会遇到取消/舍入错误,导致您得到任意糟糕的结果。

一种“正确”的方法是使用行和列旋转的高斯消除法,以便您始终除以最大的剩余数值。 (这对于 NxN 矩阵也是稳定的。)。 请注意,仅行旋转并不能捕获所有不良情况。

然而,在我看来,正确而快速地实现这一点并不值得你花时间——使用一个经过良好测试的库,并且有一堆只有标头的库。

Don't try to do this yourself if you're serious about getting edge cases right. So while they many naive/simple methods are theoretically exact, they can have nasty numerical behavior for nearly singular matrices. In particular you can get cancelation/round-off errors that cause you to get arbitrarily bad results.

A "correct" way is Gaussian elimination with row and column pivoting so that you're always dividing by the largest remaining numerical value. (This is also stable for NxN matrices.). Note that row pivoting alone doesn't catch all the bad cases.

However IMO implementing this right and fast is not worth your time - use a well tested library and there are a heap of header only ones.

绝不服输 2024-07-30 23:40:23

我刚刚创建了一个 QMatrix 类。 它使用内置的向量> 容器。 QMatrix.h
它使用 Jordan-Gauss 方法来计算方阵的逆。

您可以按如下方式使用它:

#include "QMatrix.h"
#include <iostream>

int main(){
QMatrix<double> A(3,3,true);
QMatrix<double> Result = A.inverse()*A; //should give the idendity matrix

std::cout<<A.inverse()<<std::endl;
std::cout<<Result<<std::endl; // for checking
return 0;
}

inverse 函数的实现如下:

给定一个具有以下字段的类:

template<class T> class QMatrix{
public:
int rows, cols;
std::vector<std::vector<T> > A;

inverse() 函数:

template<class T> 
QMatrix<T> QMatrix<T>:: inverse(){
Identity<T> Id(rows); //the Identity Matrix as a subclass of QMatrix.
QMatrix<T> Result = *this; // making a copy and transforming it to the Identity matrix
T epsilon = 0.000001;
for(int i=0;i<rows;++i){
    //check if Result(i,i)==0, if true, switch the row with another

    for(int j=i;j<rows;++j){
        if(std::abs(Result(j,j))<epsilon) { //uses Overloading()(int int) to extract element from Result Matrix
            Result.replace_rows(i,j+1); //switches rows i with j+1
        }
        else break;
    }
    // main part, making a triangular matrix
    Id(i)=Id(i)*(1.0/Result(i,i));
    Result(i)=Result(i)*(1.0/Result(i,i));  // Using overloading ()(int) to get a row form the matrix
    for(int j=i+1;j<rows;++j){
        T temp = Result(j,i);
        Result(j) = Result(j) - Result(i)*temp;
        Id(j) = Id(j) - Id(i)*temp; //doing the same operations to the identity matrix
        Result(j,i)=0; //not necessary, but looks nicer than 10^-15
    }
}

// solving a triangular matrix 
for(int i=rows-1;i>0;--i){
    for(int j=i-1;j>=0;--j){
        T temp = Result(j,i);
        Id(j) = Id(j) - temp*Id(i);
        Result(j)=Result(j)-temp*Result(i);
    }
}

return Id;
}

I have just created a QMatrix class. It uses the built in vector > container. QMatrix.h
It uses the Jordan-Gauss method to compute the inverse of a square matrix.

You can use it as follows:

#include "QMatrix.h"
#include <iostream>

int main(){
QMatrix<double> A(3,3,true);
QMatrix<double> Result = A.inverse()*A; //should give the idendity matrix

std::cout<<A.inverse()<<std::endl;
std::cout<<Result<<std::endl; // for checking
return 0;
}

The inverse function is implemented as follows:

Given a class with the following fields:

template<class T> class QMatrix{
public:
int rows, cols;
std::vector<std::vector<T> > A;

the inverse() function:

template<class T> 
QMatrix<T> QMatrix<T>:: inverse(){
Identity<T> Id(rows); //the Identity Matrix as a subclass of QMatrix.
QMatrix<T> Result = *this; // making a copy and transforming it to the Identity matrix
T epsilon = 0.000001;
for(int i=0;i<rows;++i){
    //check if Result(i,i)==0, if true, switch the row with another

    for(int j=i;j<rows;++j){
        if(std::abs(Result(j,j))<epsilon) { //uses Overloading()(int int) to extract element from Result Matrix
            Result.replace_rows(i,j+1); //switches rows i with j+1
        }
        else break;
    }
    // main part, making a triangular matrix
    Id(i)=Id(i)*(1.0/Result(i,i));
    Result(i)=Result(i)*(1.0/Result(i,i));  // Using overloading ()(int) to get a row form the matrix
    for(int j=i+1;j<rows;++j){
        T temp = Result(j,i);
        Result(j) = Result(j) - Result(i)*temp;
        Id(j) = Id(j) - Id(i)*temp; //doing the same operations to the identity matrix
        Result(j,i)=0; //not necessary, but looks nicer than 10^-15
    }
}

// solving a triangular matrix 
for(int i=rows-1;i>0;--i){
    for(int j=i-1;j>=0;--j){
        T temp = Result(j,i);
        Id(j) = Id(j) - temp*Id(i);
        Result(j)=Result(j)-temp*Result(i);
    }
}

return Id;
}
找回味觉 2024-07-30 23:40:23
//Function for inverse of the input square matrix 'J' of dimension 'dim':

vector<vector<double > > inverseVec33(vector<vector<double > > J, int dim)
{
//Matrix of Minors
 vector<vector<double > > invJ(dim,vector<double > (dim));
for(int i=0; i<dim; i++)
{
    for(int j=0; j<dim; j++)
    {
        invJ[i][j] = (J[(i+1)%dim][(j+1)%dim]*J[(i+2)%dim][(j+2)%dim] -
                      J[(i+2)%dim][(j+1)%dim]*J[(i+1)%dim][(j+2)%dim]);
    }
}

//determinant of the matrix:
double detJ = 0.0;
for(int j=0; j<dim; j++)
{ detJ += J[0][j]*invJ[0][j];}

//Inverse of the given matrix.
 vector<vector<double > > invJT(dim,vector<double > (dim));
 for(int i=0; i<dim; i++)
{
    for(int j=0; j<dim; j++)
    {
        invJT[i][j] = invJ[j][i]/detJ;
    }
}

return invJT;
}

void main()
{
    //given matrix:
vector<vector<double > > Jac(3,vector<double > (3));
Jac[0][0] = 1; Jac[0][1] = 2;  Jac[0][2] = 6;
Jac[1][0] = -3; Jac[1][1] = 4;  Jac[1][2] = 3;
Jac[2][0] = 5; Jac[2][1] = 1;  Jac[2][2] = -4;`

//Inverse of the matrix Jac:
vector<vector<double > > JacI(3,vector<double > (3));
    //call function and store inverse of J as JacI:
JacI = inverseVec33(Jac,3);
}
//Function for inverse of the input square matrix 'J' of dimension 'dim':

vector<vector<double > > inverseVec33(vector<vector<double > > J, int dim)
{
//Matrix of Minors
 vector<vector<double > > invJ(dim,vector<double > (dim));
for(int i=0; i<dim; i++)
{
    for(int j=0; j<dim; j++)
    {
        invJ[i][j] = (J[(i+1)%dim][(j+1)%dim]*J[(i+2)%dim][(j+2)%dim] -
                      J[(i+2)%dim][(j+1)%dim]*J[(i+1)%dim][(j+2)%dim]);
    }
}

//determinant of the matrix:
double detJ = 0.0;
for(int j=0; j<dim; j++)
{ detJ += J[0][j]*invJ[0][j];}

//Inverse of the given matrix.
 vector<vector<double > > invJT(dim,vector<double > (dim));
 for(int i=0; i<dim; i++)
{
    for(int j=0; j<dim; j++)
    {
        invJT[i][j] = invJ[j][i]/detJ;
    }
}

return invJT;
}

void main()
{
    //given matrix:
vector<vector<double > > Jac(3,vector<double > (3));
Jac[0][0] = 1; Jac[0][1] = 2;  Jac[0][2] = 6;
Jac[1][0] = -3; Jac[1][1] = 4;  Jac[1][2] = 3;
Jac[2][0] = 5; Jac[2][1] = 1;  Jac[2][2] = -4;`

//Inverse of the matrix Jac:
vector<vector<double > > JacI(3,vector<double > (3));
    //call function and store inverse of J as JacI:
JacI = inverseVec33(Jac,3);
}
~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文