从街景图像中提取监控摄像头位置
与我之前的问题相关,是否有一些现实的机会来提取监控摄像头位置通过计算机视觉算法从谷歌街景图片中提取出来? 我不是该领域的专家。 但应该比人脸检测之类的要容易一些。
Related to my previous question, is there some realistic chance to extract surveillance camera positions out of google streetview pictures by means of computer vision algorithms? I'm no expert in that area. But it should be easier than face detection and the like.
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(3)
这听起来像是亚马逊的 Mechanical Turk 就是为了解决此类问题而发明的。 我不认为图像处理或图像识别算法在我们当前的理解和硬件/软件能力范围内。
This sounds like the class of problem for which Amazon's Mechanical Turk was invented. I don't believe that an image processing or image recognition algorithm is within our current understanding and hardware/software capabilities.
我绝对同意 Rob 的观点,即提取相机位置将比面部检测(甚至识别)更困难。
对您的问题采取不同的处理方式怎么样:如何找到拍摄监控图像的摄像机的位置。
有标准(如果复杂)摄影测量技术,可以使用以下照片绘制物体的 2D 或 3D 坐标多个摄像机或多个角度的单个摄像机。 您正在寻找的是我以前从未见过的“反向摄影测量”,但是这个有趣的 法律轶事表明这是可行的。
I definitely agree with Rob that extracting the camera locations is going to be more difficult than face detection (or even recognition).
How about a different tack on your question: how to find the location of the camera taking surveillance images.
There are standard (if complicated) photogrammetry techniques to map 2D or 3D coordinates of objects using photographs from multiple cameras or a single camera at multiple angles. What you're looking for would be "reverse photogrammetry" which I haven't seen before, but this interesting legal anecdote suggests it's feasible.
我认为你错误地认为这是一个比面部识别更容易的问题(尽管我怀疑你的意思是面部检测)。
考虑到脸部的形状相当规则,通常有两只眼睛、一个鼻子和一张嘴,处于特定的配置,而一个制造商的监控摄像头看起来与另一制造商的监控摄像头不同,并且从不同角度看起来也不同。
对于面孔,如果您看不到人脸,则表示您对此不感兴趣,但在您的场景中,您有兴趣检测相机,无论它与您的相对位置如何。
虽然并非不可能(即人类可以做到!),但我认为计算机科学还不能完全胜任这项任务……
I think you're wrong about it being an easier problem than face recognition (though I suspect you mean face detection).
Consider that faces are of a reasonably regular shape, generally have 2 eyes a nose and a mouth in a specific configuration whilst surveillance cameras from one manufacturer will look different from those of another and look different from different angles.
With faces, if you can't see the person's face you're not interested in it, but in your scenario you're interested in detecting the camera regardless of it's relative position to you.
Whilst not impossible (i.e. humans can do it!) I don't think computer science is quite up to the task just yet.....