如何计算网络直径
我的数据存储在关系数据库mysql和PHP中。 我有一个名为“rel”的表,它有两个字段:
from_node | to_node
=====================
1 2
1 3
2 3
依此类推......
我如何计算网络的网络直径。 我知道它是任意两对之间最长或最短的路径,但我如何计算它? 有没有 PHP 脚本或函数可以帮助我做到这一点?
I have data stored in relational database mysql and PHP.
I have a table called "rel" which has two fields:
from_node | to_node
=====================
1 2
1 3
2 3
and so on......
How can I calculate the network Diameter of a network. I know it is the longest or shortest path between any two pairs but how do I calculate it?
Is there any PHP script or function which can help me to do it?
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(6)
假设你有一个连通图(否则最大距离是无限的)并且所有节点点都是数字......
用(from_node,to_node,1)播种一个表(从,到,距离)。 对于每个元组,必须确保 from_node 的值始终小于 to_node 的值
重复执行插入,直到没有插入任何行。 然后选择最大距离以获得直径。
编辑:对于具有加权顶点的图,您只需使用权重作为距离场的种子,而不是使用 1。
Assuming you have a connected graph (otherwise the max distance is infinite) and all your node points are numbers....
Seed a table (from, to, distance) with (from_node, to_node, 1). For each tuple, you must ensure that the value of from_node is always less than the value of to_node
Execute the insert repeatedly until no rows are inserted. Then select max distance to get your diameter.
EDIT: For a graph with weighted vertices, you would just seed the distance field with the weights rather than using 1.
请参阅维基百科文章,了解与距离和直径相关的图形(网络)术语。 它提到了一些关于如何找到直径的注释。 关于图的连通分量的文章的这一部分还建议了一种算法发现这些连接的组件,可以很容易地调整它们来告诉您图形的直径。 (如果有多个组件,那么我相信直径是无限的。)该算法是一种基于面包/深度优先搜索的简单算法,因此实现起来应该不会很麻烦,而且效率不应该太高。也是一个很大的问题。
如果您不具备编写此内容的能力(尽管我认为不需要花费那么多精力),我建议您寻找一个好的网络/图形分析库。 那里有一些,但我不确定您想使用 PHP 查看哪些。 (您可能必须使用某种互操作性。)
无论如何,希望有所帮助。
See the Wikipedia article on graph (network) terms related to distance and diameter. It mentions a few notes on how to find the diameter. This section of the article on connected components of graphs also suggests an algorithm to discover these connected components, which could be adapted very easily to tell you the diameter of the graph. (If there are more than one components then the diameter is infinite I believe.) The algorithm is a simple one based on a bread/depth-first search, so it shouldn't be much trouble to implement, and efficiency shouldn't be a great problem either.
If you're not up to writing this (though I don't think it would take that much effort), I recommend looking for a good network/graph analysis library. There's a few out there, though I'm not sure which ones you'd want to look at using PHP. (You'd probably have to use some sort of interop.)
Hope that helps, anyway.
我真的认为您的意思是您想要找到网络的集群系数。 此外,您想用 PHP 来完成它。 我不知道有多少好的网络分析库被移植到PHP扩展中。
但是,如果您遵循这篇文章,那么想出自己的文章应该不会(太)困难。 您不需要生成漂亮的图表,您只需找到系数即可。
如果这不是您的意思,请更新/澄清您的问题。
I really think you meant you wanted to find the cluster coefficient of a network. Furthermore, you'd like to do it in PHP. I don't know how many good network analysis libraries have been ported to PHP extensions.
However, if you follow the article, it should not be (too) difficult to come up with your own. You don't need to produce pretty graphs, you just have to find the coefficient.
If that's not what you meant, please update / clarify your question.
网络是一个连通图。 那么为什么不尝试根据数据构建一些图形表示并对其执行 BFS 或 DFS 呢? 您将得到您正在寻找的东西。
Network is a connected graph. So why don't you try to build some graph representation from your data and perform BFS or DFS on this? You will get exactly that you are looking for.
很简单:
distance
的列-1
1
-1
的节点更新表 SET distance=:i+1 WHERE from_node IN (SELECT to_node FROM table WHERE distance=:i)
-1
1
最大距离是图形/网络的直径。
That's simple:
distance
-1
1
-1
UPDATE table SET distance=:i+1 WHERE from_node IN (SELECT to_node FROM table WHERE distance=:i)
-1
1
This time the maximum distance is the diameter of your graph/network.
在您的示例中,您显示每个节点都链接到每个其他节点。 如果您的整个设置都是这种情况,则直径为 1。
如果您的设置是像这样的线性结构的线:
那么您的直径为 (n+1)/3。
如果您的设置更加不规则,具有一系列 N 个节点和 K 个链接,那么您的直径至少
logN/LogK
编辑:
In your example you show that each node links to every other node. If this is the case throughout your setup, then the diameter is 1.
If your setup is a line like so in a linear formation:
Then your diameter is (n+1)/3.
If your setup is more irregular, with a series of N number nodes and K number of links, then your diameter is at least
logN/LogK
Edit: To clarify, I'm calculating the average shortest distance between pairs of nodes.