使用数组实现 4 堆

发布于 2024-07-19 05:28:22 字数 210 浏览 9 评论 0原文

当使用数组存储所有元素时,你使用什么样的数学来遍历4堆? 具体来说,如何找到特定叶子的父节点的索引?

假设我有以下数组:

0|1|2|3|4|5|6|7|8|9|10|... 等等,

然后根据该数组构建堆,其中 1 为根,2 为根。 .5 它的子级,6..9 2 的子级等等。

如果我需要找到(例如)6 的父级,我到底需要什么数学?

What kind of math do you use to traverse the 4-heap when using an array to store all the elements? Specifically, how do you find the index of a parent node to a specific leaf?

Let's say I have the following array:

0|1|2|3|4|5|6|7|8|9|10|... etc.

with the heap then constructed from that with 1 being the root, 2..5 its children, 6..9 2's children etc.

What exactly is the math i need if I need to find (for example) the parent of 6?

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(3

穿越时光隧道 2024-07-26 05:28:22

首先进行简单的观察。 根位于 1,因此所有子节点都从 2 开始。 在索引 i 之前,堆中有 i-1 个顶点(记住,索引 0 不是顶点!),每个顶点都有 4 个子节点。 因此,i 个孩子将在 2+4*(i-1)2+4*i-1 em> 例如,1 的子级是 2+4*0=22+4*0+3=5

def son_(i):
    return range(2+4*(i-1),2+4*i)
for i in range(1,10): print i,son_(i)

输出

1 [2, 3, 4, 5]
2 [6, 7, 8, 9]
3 [10, 11, 12, 13]
4 [14, 15, 16, 17]
5 [18, 19, 20, 21]
6 [22, 23, 24, 25]
7 [26, 27, 28, 29]
8 [30, 31, 32, 33]
9 [34, 35, 36, 37]

无孔,请参阅。

如果first_son(i)=2+4i 且last_son(i)=2+4i+3=4(i+1)+1,我们有father(n)=floor((n-2)/4)+1 。 (+1 是让数组从 1 开始)

让我们测试一下:

def father_(n):
    return (n-2)/4+1
for i in range(2,20): print i,father_(i)

输出:

2 1
3 1
4 1
5 1
6 2
7 2
8 2
9 2
10 3
11 3
12 3
13 3
14 4
15 4
16 4
17 4
18 5
19 5

First a simple observation. Root is at 1, so all children begin at 2. Before index i there are i-1 vertices (remember, index 0 is not a vertex!) in the heap, each has 4 children exactly. So ith children will be at 2+4*(i-1) to 2+4*i-1 for example, 1's children are 2+4*0=2 to 2+4*0+3=5.

def son_(i):
    return range(2+4*(i-1),2+4*i)
for i in range(1,10): print i,son_(i)

output

1 [2, 3, 4, 5]
2 [6, 7, 8, 9]
3 [10, 11, 12, 13]
4 [14, 15, 16, 17]
5 [18, 19, 20, 21]
6 [22, 23, 24, 25]
7 [26, 27, 28, 29]
8 [30, 31, 32, 33]
9 [34, 35, 36, 37]

No holes, see.

If first_son(i)=2+4i and last_son(i)=2+4i+3=4(i+1)+1, we have that father(n)=floor((n-2)/4)+1. (the +1 is to make the array to start at 1)

Let's test that:

def father_(n):
    return (n-2)/4+1
for i in range(2,20): print i,father_(i)

Output:

2 1
3 1
4 1
5 1
6 2
7 2
8 2
9 2
10 3
11 3
12 3
13 3
14 4
15 4
16 4
17 4
18 5
19 5
独行侠 2024-07-26 05:28:22

查找任何子项的父项(1 除外,它没有父项):

parent = int((child + 2) / 4)

查找父项的第一个和最后一个子项:

child_first = parent * 4 - 2
child_last  = parent * 4 + 1

您可以在操作中看到这一点,因为在每个级别,您添加的元素数量是您添加的元素的四倍在上一级别中所做的事情:

  1           (   1)
  2 thru    5 (   4)
  6 thru   21 (  16)
 22 thru   85 (  64)
 86 thru  341 ( 256)
342 thru 1365 (1024)

Level 1:
1 -> 2 3 4 5

Level 2:
2 ->  6  7  8  9
3 -> 10 11 12 13
4 -> 14 15 16 17
5 -> 18 19 20 21

Level 3:
 6 -> 22 23 24 25
 7 -> 26 27 28 29
 8 -> 30 31 32 33
 9 -> 34 35 36 37
10 -> 38 39 40 41
11 -> 42 43 44 45
12 -> 46 47 48 49
13 -> 50 51 52 53
14 -> 54 55 56 57
15 -> 58 59 60 61
16 -> 62 63 64 65
17 -> 66 67 68 69
18 -> 70 71 72 73
19 -> 74 75 76 77
20 -> 78 79 80 81
21 -> 82 83 84 85

 

Level 4:
 22 ->  86  87  88  89
 23 ->  90  91  92  93
 24 ->  94  95  96  97
 25 ->  98  99 100 101
 : : : :
 82 -> 326 327 328 329
 83 -> 330 331 332 333
 84 -> 334 335 336 337
 85 -> 338 339 340 341

例子有:

parent of 342 = int(344/4) = 86 (same for 343,344,345).
parent of 346 = int(348/4) = 87 (same for 347,348,349).
first child of 21 = 21 * 4 - 2 = 82
last  child of 21 = 21 * 4 + 1 = 85

To find the parent of any child (other than 1, which has no parent):

parent = int((child + 2) / 4)

To find the first and last child of a parent:

child_first = parent * 4 - 2
child_last  = parent * 4 + 1

You can see this in operation since, at each level, you add four times as many elements as you did in the previous level:

  1           (   1)
  2 thru    5 (   4)
  6 thru   21 (  16)
 22 thru   85 (  64)
 86 thru  341 ( 256)
342 thru 1365 (1024)

Level 1:
1 -> 2 3 4 5

Level 2:
2 ->  6  7  8  9
3 -> 10 11 12 13
4 -> 14 15 16 17
5 -> 18 19 20 21

Level 3:
 6 -> 22 23 24 25
 7 -> 26 27 28 29
 8 -> 30 31 32 33
 9 -> 34 35 36 37
10 -> 38 39 40 41
11 -> 42 43 44 45
12 -> 46 47 48 49
13 -> 50 51 52 53
14 -> 54 55 56 57
15 -> 58 59 60 61
16 -> 62 63 64 65
17 -> 66 67 68 69
18 -> 70 71 72 73
19 -> 74 75 76 77
20 -> 78 79 80 81
21 -> 82 83 84 85

 

Level 4:
 22 ->  86  87  88  89
 23 ->  90  91  92  93
 24 ->  94  95  96  97
 25 ->  98  99 100 101
 : : : :
 82 -> 326 327 328 329
 83 -> 330 331 332 333
 84 -> 334 335 336 337
 85 -> 338 339 340 341

Examples are:

parent of 342 = int(344/4) = 86 (same for 343,344,345).
parent of 346 = int(348/4) = 87 (same for 347,348,349).
first child of 21 = 21 * 4 - 2 = 82
last  child of 21 = 21 * 4 + 1 = 85
樱花坊 2024-07-26 05:28:22

您需要整数除法和乘法。
例如,6 的父级是 1+((6-1)/4) = 2
5 的父级是1+((5-1)/4) = 2
10 的父级是 1+((10-1)/4) = 3 等。
2 的子级为 2+4*(2-1)..(2+4*(3-1))-1 = 6..9

You need integer division and multiplication.
For example, the parent of 6 is 1+((6-1)/4) = 2.
The parent of 5 is 1+((5-1)/4) = 2.
The parent of 10 is 1+((10-1)/4) = 3, etc.
2's children are 2+4*(2-1)..(2+4*(3-1))-1 = 6..9.

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文